Журналы →  Gornyi Zhurnal →  2025 →  №11 →  Назад

GEOMECHANICAL SUPPORT OF FIELD DEVELOPMENT
Название Efficiency of physicochemical stimulation of iron ore disintegration
DOI 10.17580/gzh.2025.11.03
Автор Aleksandrova T. N., Chanturia A. V., Kuznetsov V. V.
Информация об авторе

Empress Catherine II Saint-Petersburg Mining University, Saint-Petersburg, Russia

T. N. Aleksandrova, Head of Department, Doctor of Engineering Sciences, Corresponding Member of the Russian Academy of Sciences

V. V. Kuznetsov, Departmental Assistant, Candidate of Engineering Sciences, kuznetsov@vvalen.ru

 

Metalloinvest, Stary Oskol, Russia1 ; Academician Melnikov Institute of Comprehensive Exploitation of Mineral Resources—IPKON, Russian Academy of Sciences, Moscow, Russia2
A. V. Chanturia, Head of Technical Expertise Office for Production Sustainability and Modernization Projects at Mining Division1, Post-Graduate Student2

Реферат

The prevailing trend in the sphere of iron ore reserves and resources of the Russian Federation is their replenishment by means of processing of rebellious and low-grade ore. The major difficulty here is the required high capacity of processing flowsheets, which conditions a very high energy consumption. A potential of the higher energy efficiency is offered by the ore pretreatment stimulation approaches which consist in intensification of selectivity of mineral disintegration by means of various physical and chemical effects. Stimulation of ore pretreatment utilized contrast strength characteristics of mineral components, which provided a product with the assigned size distribution of the components owing to different fracture velocities of disintegration of aggregates with different ratios of ore and rock percentage. Removal of aggregates with the higher fracture velocities makes it possible to decrease the circulating load and the required capacity at the subsequent stages, which greatly reduces energy consumption and possible overgrinding of useful components. Treatment of lumpy samples of unoxidized ferruginous quartzite by softening reagents decreases strength of lumps and, consequently, leads to a decrease in the coarseness of lumps which are most sensitive to disintegration. This study focuses on applicability of chemical stimulators of disintegration at the stage of wet autogenous milling of unoxidized ferruginous quartzite. On the basis of experimental and theoretical research of disintegration ability of the test raw material, drop-weight testing and interpretation of the test results using a proposed efficiency criterion of stimulation effect, the parameters are calculated for simulation modeling of an autogenous milling flowsheet. Using the modeling results, it is forecasted that the energy consumption decreases when disintegration stimulators are involved.

Ключевые слова Ferruginous quartzite, iron ore, pretreatment, selective disintegration, software package JK SimMet, drop-weight test, disintegration stimulators
Библиографический список

1. Chanturia V. A., Shadrunova I. V., Gorlova O. E. Innovative processes of deep and environmentally safe processing of technogenic raw materials in the conditions of new economic challenges. Sustainable Development of Mountain Territories. 2021. Vol. 13, No. 2(48). pp. 224–237.
2. Pashkevich N. V., Khloponina V. S., Pozdnyakov N. A., Avericheva A. A. Analysing the problems of reproducing the mineral resource base of scarce strategic minerals. Journal of Mining Institute. 2024. Vol. 270. pp. 1004–1023.
3. Dmitrieva D. M., Chanysheva A. F. Contribution of mining companies to the sustainable development of the mineral resource base in the arctic region: A new approach to ranking key actors and assessing their interaction. Sever i Rynok: Formirovanie Ekonomiceskogo Poradka. 2024. Vol. 27, No. 2. pp. 71–87.
4. Yushina T. I., Petrov I. M., Avdeev G. I., Krylov I. O., Valavin V. S. et al. The future use of natural and man-made iron ore raw materials in the Russian Federation. MIAB. 2015. No. 2. p. 416.
5. Yushina T. I., Chanturia E. L., Dumov A. M., Myaskov A. V. Modern trends of technological advancement in iron ore processing. Gornyi Zhurnal. 2021. No. 11. pp. 75–83.
6. Ismagilov R. I., Baskaev P. M., Ignatova T. V., Shelepov E. V. The prospects for expanding the iron ore mineral and raw material base through the processing of oxidized ferruginous quartzite of the Mikhailovskoe deposit. Obogashchenie Rud. 2020. No. 3. pp. 19–24.
7. Pelevin A. E. Iron ore beneficiation technologies in Russia and ways to improve their efficiency. Journal of Mining Institute. 2022. Vol. 256. pp. 579–592.
8. Varichev A. V., Ugarov A. A., Efendiev N. T., Kretov S. I., Lavrinenko A. A. et al. Innovative solutions in iron ore production at Mikhailovsky Mining and Processing Plant. Journal of Mining Science. 2017. Vol. 53, No. 5. pp. 925–937.
9. Baranov V. F., Patkovskaya N. А., Tasina Т. I. Current trends in magnetite iron ores processing technology. Basic trends. Obogashenie Rud. 2013. No. 3. pp. 10–17.
10. Pelevin A. E. Fine screening and its place in the technology of iron ores dressing. Izvestiya vuzov. Gornyi zhurnal. 2011. No. 4. pp. 110–117.
11. Ismagilov R. I., Chanturiya E. L., Shekhirev D. V. Prognostical assessment of technological indicators of ferruginous quartzites in the enrichment. Sustainable Development of Mountain Territories. 2022. Vol. 14, No. 4(54). pp. 529–545.
12. Oleynik T. A., Lyashenko V. I., Chekushina T. V., Oleynik M. O. Substantiation of efficiency and ecological safety of technologies and cyclone plants of a new generation in iron ore dressing and processing. Chernye Metally. 2021. No. 5. pp. 10–16.
13. Kuskov V. B., Iliin E. S. Effect of die taper angles, binder amount and type on strength characteristics of extrusion briquettes. Chernye Metally. 2025. No. 1. pp. 4–9.
14. Heinicke F., Lieberwirth H., Kühnel R., Alexandrova T. N. Advantages of selective grinding using high-pressure grinding rolls combined with air classification. Obogashchenie Rud. 2022. No. 1. pp. 3–7.
15. Hesse M., Popov O., Lieberwirth H. Increasing efficiency by selective co mminution. Minerals Engineering. 2017. Vol. 103-104. pp. 112–126.
16. Baawuah E., Addai-Mensah J., Skinner W. Pushing the frontiers of ultrafine crushing and the impact on comminution energy and mineral liberation. Minerals Engineering. 2025. Vol. 231. ID 109430.
17. Fadeeva N. V., Orekhova N. N., Kolodezhnaya E. V., Musatkina E. N. Study of disintegration processes and dynamic classification of graphite-containing dust from metallurgical production. Obogashchenie Rud. 2023. No. 6. pp. 39–46.
18. Runge K. C., Frausto J. J., Lisso M.M., Jokovic V., Yahyaei M. Importance of considering classificatio n and liberation when optimising comminution and flotation. Minerals Engineering. 2024. Vol. 209. ID 108612.
19. Chimwani N. Optimization of the Mechanical Comminution–The Crushing Stage. Recovery of Values from Low‐Grade and Complex Minerals: Development of Sustainable Processes. Hoboken : John Wiley & Sons, 2024. pp. 1–40.
20. Samukov A. D., Gerasimenko S. I. Modeling autogenous milling of iron ore with regrinding of critical particle sizes. Gornyi Zhurnal. 2023. No. 10. pp. 25–34.
21. Khopunov E. A. Energy and power factors of selective destruction of ores. Izvestiya vuzov. Gornyi zhurnal. 2020. No. 1. pp. 79–88.
22. Ghasemi Z., Neumann F., Zanin M., Karageorgos J., Chen L. A comparative study of prediction methods fo r semi-autogenous grinding mill throughput. Minerals Engineering. 2024. Vol. 205. ID 108458.
23. Kallaev I. T., Kukhtina A. A., Kukhtina P. A., Nikolaeva N. V. Impact of ultrasound on grindability of copper-molybdenum ores. Uspekhi sovremennogo estestvoznaniya. 2024. No. 5. pp. 90–97.
24. Aleksandrova T. N., Aburova V. A., Nikolaeva N. V., Struk G. V. The influence of energy exposure on the strength characteristics of gold-bearing ore. Obogashchenie Rud. 2025. No. 3. pp. 3–8.
25. Litvinova N. M., Melnikova T. N., Yatlukova N. G., Danilov E. I. Stimulation of milling of refractory gold ore from the Albaza deposit. MIAB. 2005. Special issue. pp. 299–305.
26. Saadun A., Fredzh M., Bukarm R., Khadzhi R. Fragmentation analysis using digital image processing and empirical model (KuzRam): A comparative study. Journal of Mining Institute. 2022. Vol. 257. pp. 822–832.
27. Zhukovskiy Yu. L., Korolev N. A., Malkova Ya. M. Monitoring of grinding condition in drum mills based on resulting shaft torque. Journal of Mining Institute. 2022. Vol. 256. pp. 686–700.
28. Romashev A. O., Nikolaeva N. V., Gatiatullin B. L. Adaptive approach formation using machine vision technology to determine the parameters of enrichment products deposition. Journal of Mining Institute. 2022. Vol. 256. pp. 677–685.
29. Efimov D. A., Gospodarikov A. P. Prospects for the use of reuleaux triangle rollers in crushers and high-pressure grinding rolls. Gornoe oborudovanie i elektromekhanika. 2022. No. 4(162). pp. 36–43.
30. Cardenas-Vera A., Hesse M., Möckel R., Merker R. G., Heinig T. et al. Investigation of Sensor-Based sorting and selective comminution for pre-concentration of an unusual parisite-rich REE ore, South Namxe, Vietnam. Minerals Engineering. 2022. Vol. 177. ID 107371.
31. Vasilyeva N., Golyshevskaia U., Sniatkova A. Modeling and improving the efficiency of crushing equipment. Symmetry. 2023. Vol. 15, Iss. 7. ID 1343.
32. Aleksandrova T., Nikolaeva N., Afanasova A., Romashev A., Kuznetsov V. Justification for criteria for evaluating activation and destruction processes of complex ores. Minerals. 2023. Vol. 13, Iss. 5. ID 684.
33. Aleksandrova T. N., Chanturiya A. V., Kuznetsov V. V. Mineralogical and technological features and patterns of selective disintegration of ferruginous quartzites of the Mikhailovskoye deposit. Journal of Mining Institute. 2022. Vol. 256. pp. 517–526.
34. Faramarzi F., Napier-Munn T., Morrison R., Kanchibotla S. S. The extended drop weight testing approach—What it reveals. Minerals Engineering. 2020. Vol. 157. ID 106550.
35. Morrell S. A method for predicting the specific energy requiremen t of comminution circuits and assessing their energy utilisation efficiency. Minerals Engineering. 2008. Vol. 21, Iss. 3. pp. 224–233.

Language of full-text русский
Полный текст статьи Получить
Назад