Журналы →  Gornyi Zhurnal →  2025 →  №9 →  Назад

PROCESSING AND COMPLEX USAGE OF MINERAL RAW MATERIALS
Название Concrete Damage Plasticity model testing in numerical modeling of cemented rock fill
DOI 10.17580/gzh.2025.09.10
Автор Iovlev G. A., Zileev A. G., Ivanov D. A., Mikhailova S. D.
Информация об авторе

Empress Catherine II Saint-Petersburg Mining University, Saint-Petersburg, Russia

G. A. Iovlev, Candidate of Engineering Sciences, Associate Professor, Iovlev_GA@pers.spmi.ru
A. G. Zileev, Candidate of Engineering Sciences, Associate Professor
D. A. Ivanov, Student
S. D. Mikhailova, Student

Реферат

This study investigates cemented rock fill (CRF) mixtures as a material for backfilling of mined-out voids in underground mining. The analysis of backfill types demonstrates that mixing crushed waste rock with hydraulic or paste backfills allows expanding the particle size distribution boundaries of CRF mixtures, which leads to an increase in strength of concrete and simplifies laboratory testing. Based on this approach, a method for optimizing the particle size distribution using the Talbot curves is described, and an optimal composition corresponding to the maximum strength of the mixture under uniaxial compression is proposed. The maximum strength was achieved at a Talbot number of 0.6. A comprehensive laboratory testing program for the developed formulation was carried out, including uniaxial tension, uniaxial compression and triaxial compression tests. The test results were used to determine the Mohr–Coulomb strength parameters and the input parameters for the Concrete Damage Plasticity (CDP) model. Multi-variant numerical modeling of a sample’s uniaxial compression test was performed using Simulia Abaqus software. The simulation results revealed a significant sensitivity of the solutions to the degree of finite element mesh discretization, indicating a limited applicability area of the CDP model for simulating non-reinforced CRF structures. The triaxial test results, particularly, the presence of a brittle–ductile failure transition and the dependence of stiffness on the stress state, show that the structure of the CRF material is porous and compressible. It is concluded that an adequate description of the mechanical behavior of CRF may require advanced constitutive models with multiple yield surfaces that account for volumetric plastic deformations.
The study was supported by the Russian Science Foundation, Project No. 23-17-00144.

Ключевые слова Backfill, Cemented Rock Fill (CRF), Concrete Damage Plasticity model, numerical simulation, material damage, crushing energy, triaxial laboratory test
Библиографический список

1. Zileev А. G., Vasiliev D. А., Тulin P. К., Nguyen Т. Т, Кomolov V. V. Applications of the artificially supported stoping method with cemented rockfill in mining. MIAB. 2022. No. 6-1. pp. 21–34.
2. Deshkovskiy V. N., Novokshonov V. N., Palto P. P. Calculation procedure of waterconducting crack zone height for stoping with partical backfill in the form of packs. Gornaya mekhanika. 2007. No. 2. pp. 77–84.
3. Marysyuk V. P., Shilenko S. Yu., Andreev A. A., Vilner M. A. Justification of underfill in mined-out voids in cut-and-fill stoping. Gornyi Zhurnal. 2022. No. 10. pp. 22–27.
4. Kovalski E.R., Gromtsev K. V., Petrov D.N. Mode ling deformation of rib pillar s during backfill. MIAB. 2020. No. 9. pp. 87–101.
5. Kulikova A. A., Kovaleva A. M. Use of tailings of enrichment for laying of the developed space of mines. MIAB. 2021. No. 2-1. pp. 144–154.
6. Aimbetov M. M., Ananin A. I., Chirkov V. N., Otarbaev O. M. Design choices and production decisions in mining with backfilling at Pervomaiskoe deposit. Gornyi Zhurnal. 2018. No. 5. pp. 27–33.
7. Danilov A., Korelskiy D., Matveeva V., Horttanainen M. Backfill of a mined-out gold ore deposit with th e cemented rubber-cord and waste rock paste: Environmental changes in aqueous media. Journal of Ecological Engineering. 2022. Vol. 22, No. 7. pp. 190–203.
8. Qi C., Fourie A. Cemented paste backfill for mineral tailings management: Review and future perspectives. Minerals Engineering. 2019. Vol. 144. ID 106025.
9. Saw H., Villaescusa E. Geotechnical properties of mine fill. Advances in Geotechnical Infrastructure : The 18th Southeast Asian Geotechnical Conference Cum Inaugural Agssea Conference. Singapore, 2013. DOI: 10.3850/978-981-07-4948-4
10. Carneiro J. J. V., Marques E. A. G., Viana da Fonseca A. J. P., Ferraz R. L., Oliveira A. H. C. Characterization of an iron ore tailing sample and the evaluation of its representativeness. Geotechnical and Geological Engineering. 2023. Vol. 41, Iss. 5. pp. 2833–2852.
11. Deb D., Sreenivas T., Dey G. K., Panchal S. Paste backfill technology: Essential characteristics and assessment of its application for mill rejects of uranium ores. Transactions of the Indian Institute of Metals. 2017. Vol. 70, Iss. 2. pp. 487–495.
12. Vasilyeva M. A., Volchikhina A. A., Morozov M. D. Re-backfill technology and equipment. MIAB. 2021. No. 6. pp. 133–144.
13. Vasil eva М. А., Volchikhina А. А., Kuskildin R. B. Improvement of water segregation in backfilling. MIAB. 2023. No. 4. pp. 125–139.
14. Fall M., Adrien D., Célestin J. C., Pokharel M., T ouré M. Saturated hydraulic conductivity of cemented paste b ackfill. Minerals Engineering. 2009. Vol. 22, Iss. 15. pp. 1307–1317.
15. Zabolot niy S. A., Velichko Yu. V., Shiryaev A. A., Gritsay Yu. L., Botvinnikov V. V. et al. Technology and equipment for dry concentration of haematite-martite ores by mining with preliminary selective crushing. Gornyi Zhurnal. 2008. No. 6. pp. 90–94.

16. Gaziev U. A., Rakhimov S h. T. Optimization of backill mixtures using mining and met allurgy waste. Advanced Technologies in Construction, Heating and Energy Supply : International Conference Proceedings. Saratov : Amirit, 2015. pp. 78–80.
17. Kovalskii E. R., Gromtsev K. V. Development of the technology of stowing the developed space during mining. Journal of Mining Institute. 2022. Vol. 254. pp. 202–209.
18. Rybak Ya., Khayrutdinov M. M., Kuziev D. A., Kongar -Syuryun C. B., Babyr N. V. Prediction of the geomechanical state of the rock mass when mining salt deposits with stowing. Journal of Mining Institute. 2022. Vol. 253. pp. 61–70.
19. Benzaazoua M., Belem T., Bussière B. Chemical factors tha t influence the performance of mine su lphidic paste backfill. Cement and Concrete Research. 2002. Vol. 32, Iss. 7. pp. 1133–1144.
20. Yu T. R., Counter D. B. Backfill practice and technology at Kidd Creek Mines. The Canadian Mining and Metallurgical Bulletin. 1983. Vol. 76, No. 856. pp. 56–65.
21. Sainsbury D. P., Sainsbury B. L. Design and implementation of cemented rockfill at the Ballarat Gold Project. Mine Fill 2014: Proceedings of the Eleventh International Symposium on Mining with Backfill. Perth : Australian Centre for Geomechanics, 2014. pp. 205–217.
22. Sainsbury B.-A., Gharehdash S., Sainsbury D. Large-scale characterisation of cemented rock fill performanc e for exposure stability analysis. Construction and Building Materials. 2021. Vol. 308. ID 1249 95.
23. Chou C. L., Chouteau M., Benzaazoua M. Laboratory characteriz ation of mining cemented rockfill by NDT methods: Experimental set-up and testing. Nondestructive Testing of Materials and Structures : Proceedings of NDTMS-2011. RILEM Bookseries. New York : Springer, 2013. Vol. 6. pp. 935–941.
24. Mardani-Aghabaglou A., Son A. E., Felekoglu B., Ramyar K. Effe ct of cement fineness on properties of cementitious materials containing high range water reducing admixture. Journal of Green Building. 2017. Vol. 12, Iss. 1. pp. 142–167.
25. Dorricott M. G., Grice A. G. Backfill—The environmentally frien dly tailings disposal system. Green Processing 2002—Proceedings: International Conference on the Sustainable Proceesing of Minerals. Cairns, 2002. ID P200204039.
26. Sokolov I. V., Antipin Yu. G., Rozhkov A. A., Solomein Yu. M. Environmental geotechnology for low-grade ore mining with the creation of conditions for the concurrent disposal of mining waste. Journal of Mining Institute. 2023. Vol. 260. pp. 289–296.
27. Wu J., Feng M., Mao X., Xu J., Zhang W. et al. Particle size distribution of aggregate effects on mechanic al and structural properties of cemented rockfill: Experiments and modeling. Construction and Building Materials. 2018. Vol. 193. pp. 295–311.
28. Hane I., Belem T., Benzaazoua M., Maqsoud A. Laboratory characteriz ation of cemented tailings paste containing crushed waste rocks for improved compressive strength development. Geotechnical and Geological Engineering. 2017. Vol. 35, Iss. 2. pp. 645–662.
29. Wang C., Villaescusa E. Backfill research at the Western Australian School of Mines. MassMin 2000 : Conference Proceedings. Brisbane, 2000. ID P200007075.
30. Arioglu E. Design aspects of cemented aggregate fill mixes for tungs ten stoping operations. Mining Science and Technology. 1984. Vol. 1, Iss. 3. pp. 209–214.
31. Ercikdi B., Baki H., İzki M. Effect of desliming of sulphide-rich mil l tailings on the longterm st rength of cemented paste backfill. Journal of Environmental Management. 2013. Vol. 115. pp. 5–13.
32. Fall M., Benzaazoua M., Ouellet S. Experimental characterization of the influence of tailings fineness and density on the quality of cemented paste backfill. Minerals Engineering. 2005. Vol. 18, Iss. 1. pp. 41–44.
33. Kesimal A., Ercikdi B., Yilmaz E. The effect of desliming by sedimentation on paste backfill performance. Minerals Engineering. 2003. Vol. 16, Iss. 10. pp. 1009–1011.
34. Sari D., Pasamehmetoglu A. G. The effects of gradation and admixture on the pumice lightweight aggregate concrete. Cement and Concrete Research. 2005. Vol. 35, Iss. 5. pp. 936–942.
35. K arpov G. N., Kovalski E. R., Nosov A. A. Longwall recovery room erecting method for flat coal seam mining. MIAB. 2022. No. 6-1. pp. 54–67.
36. Wu J., Feng M., Chen Z., Mao X., Han G. e t al. Particle size distribution e ffects on the strength characteristic of cemented paste backfill. Minerals. 2018. Vol. 8, Iss. 8. ID 322.
37. Lubliner J., Oliver J., Oller S., Oñate E. A plastic-damage model for concrete. International Journal of Solids and Structures. 1989. Vol. 25, Iss. 3. pp. 299–326.
38. Lee J., Fenves G. L. Plastic-damage model for cyclic loading of concrete stru ctures. Journal of Engineering Mechanics. 1998. Vol. 124, Iss. 8. pp. 892–900.
39. Jiang H., Fall M., Li Y., Han J. An experimental study on compressive behaviour of cemented rockfill. Construction and Building Materials. 2019. Vol. 213. pp. 10–19.
40. Saw H., Prentice S., Villaescusa E. Characterisation of cemented rock fill materials for the Cosmos nickel mine, Western Australia. International RILEM Conference on Advances in Construction Materials Through Science and Engineering. Hong Kong, 2011. pp. 907–914.
41. ASTM C192/C192M-13а. Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory. West Conshohocken : ASTM International, 2013. 8 p.
42. Wu J.-Y., Feng M.-M., Yu B.-Y., Chen Z.-Q., Mao X.-B. et al. Experimental study of strength and deformation characteristics of cemented waste rock backfills with continuous gradation. Rock and Soil Mechanics. 2017. Vol. 38, No. 1. pp. 101–108.
43. Feng M., Wu J., Ma D., Ni X., Yu B. et al. Experimental investigation on the seepage property of saturated broken red sandstone of continuous gradation. Bulletin of Engineering Geology and the Environment. 2018. Vol. 77, Iss. 3. pp. 1167–1178.
44. Trofimov A. V., Rumyantsev A. E., Gospodarikov A. P., Kirkin A. P. Non-destructive ultrasonic method of testing the strength of backfill concrete at deep Talnakh mines. Tsvetnye Metally. 2020. No. 12. pp. 28–33.
45. Bukasa P. M., Mashingaidze M. M., Simasiku S. L. Impact of carbon dioxide on the main geotechnical quality criteria and preparation cost of cemented paste backfill. Journal of Mining Institute. 2024. Vol. 265. pp. 45–54.
46. Hillerborg A., Modéer M., Petersson P.-E. Analysis of crack formation and crack growth in concrete by means of fracture mechanic s and finite elements. Cement and Concrete Research. 1976. Vol. 6, Iss. 6. pp. 773–781.
47. Schütz R., Potts D. M., Zdravkovic L. Advanced constitutive modelling of shotcrete: Model formulation and calibration. Compute rs and Geotechnics. 2011. Vol. 38, Iss. 6. pp. 834–845.
48. Szczecina M., Winni cki A. Calibration of the CDP model parameters in Abaqus. Advances in Structural Engineering and Mechanics : The 2015 World Congress. Incheon, 2015.
49. Jankowiak T., Lodygowski T. Quasi-static failure criteria for concrete. Archives of Civil Engineering. 2010. No. 2. pp. 123–154.
50. Abaqus/CAE. Dassault Systèmes. Available at: https://www.3ds.com/products/simulia/abaqus/cae (accessed: 29.04.2025).
51. Elkady A. ABAQUS-Tools. 2025. Available at: https://github.com/amaelkady/ABAQUSTools (acce ssed: 29.04.2025).
52. Vermeer P. A., De Borst R. Non-associated plasticity for soils, concrete and rock. Heron. 1984. Vol. 29, No. 3. 64 p.
53. De Borst R., Crisfield M. A., Remmers J. J. C., Verhoosel C. V. Non-linear Finite Element A nalysis of Solids and Structures. Wiley Series in Computational Mechanics. 2nd ed. Chichester : John Wiley & Sons Ltd, 2012. 516 p.
54. Hutchinson J. W., Evans A. G. Mechanics of materials: top-down approaches to fracture. Acta Materialia. 2000. Vol. 48, Is s. 1. pp. 125–135.
55. Bazant Z. P., Oh B. H. Crack band theory for fracture of concrete. Materials and Structures. 1983. Vol. 16, Iss. 3. pp. 155–177.
56. Belyakov N., Smirnova O., Alekseev A., Tan H. Numerical simulation of the mechanical behavior of fiber-reinforced cement composites subjected dynamic loading. Applied Sciences. 2021. Vol. 11, Iss. 3. ID 1112.
57. Alfarah B., López-Almansa F., Oller S. New methodology for calculating damage variables evolu tion in Plastic Damage Model for RC structures. Engineering Structures. 2017. Vol. 132, No. 8. pp. 70–86.

Language of full-text русский
Полный текст статьи Получить
Назад