Журналы →  Gornyi Zhurnal →  2025 →  №9 →  Назад

ENERGY FACULTY, EMPRESS CATHERINE II SAINT-PETERSBURG MINING UNIVERSITY
Название Signal amplifier for control electronics of submersible drilling units
DOI 10.17580/gzh.2025.09.06
Автор Denisova O. V., Morozova O. Yu., Sterkhov I. A.
Информация об авторе

Empress Catherine II Saint-Petersburg Mining University, Saint-Petersburg, Russia

O. V. Denisova, Candidate of Chemical Sciences, Associate Professor, Denisova_OV@pers.spmi.ru
O. Yu. Morozova, Assistant

 

Aviation and Marine Electronics—AME JSC, Saint-Petersburg, Russia
I. A. Sterkhov, Leading Engineer

Реферат

Currently, routine remote monitoring of far research targets in the power generation and mineral mining sectors uses unmanned aerial vehicles which can, using information processing and dissemination tools, inform an operator about technical condition of industrial sites, power lines and cables. When working with electronic systems of submersible drilling units, with telemetry systems that allow contactless monitoring of electrical equipment and energy facilities, the signal transmission process requires new circuit solutions and additional equipment. The study of the control system of a robotic drilling unit was carried out; a significant problem was identified, which was the low quality and level of the communication signal with the main control object when processing and transmitting information over long distances. Problems arise due to the increase in the distance when receiving a signal and when processing information during the process of  drilling wells or during the process of oil production from inclined wells and from layers at greater depths. Due to the difficulty of transmitting information over long distances without distortion and loss, devices for processing and transmitting data are subject to changes and modernization. The electronic control system for the submersible drilling unit includes a device that acts as an amplifier and allows signal processing. The main characteristics of the telemetry system for the submersible electronic unit are presented. A justification is given and the selection of the element base is carried out, taking into account special operating conditions.

Ключевые слова Submersible drilling units, remote transmission of information, electronics in mining, signal processing, signal transmission, signal power amplifier
Библиографический список

1. Dvoynikov M., Sidorov D., Kambulov E., Rose F., Ahiyarov R. Salt deposits and brine blowout: Development of a cross-linking composition for blocking formations and methodology for its testing. Energies. 2022. Vol. 15, No. 19. ID 7415.
2. Kunshin A., Dvoynikov M., Timashev E., Starikov V. Development of monitoring and forecasting technology energy efficiency of well drilling using mechanical specific energy. Energies. 2022. Vol. 15, No. 19. ID 7408.
3. Dvoynikov M. V., Leusheva E. L. Modern trends in hydrocarbon resources development. Journal of Mining Institute. 2022. Vol. 258. pp. 879–880.
4. Neskoromnykh V. V., Popova M. S. Development of a drilling process control technique based on a comprehensive analysis of the criteria. Journal of Mining Institute. 2019. Vol. 240. pp. 701–710.
5. Afonasiev M. A. Problems of development of oil-producing enterprises in the introduction of innovative technologies in oil production. Vestnik Akademii znaniy. 2022. No. 48(1). pp. 16–20.
6. Litvinenko V. S., Dvoinikov M. V. Methodology for determining the parameters of drilling mode for directional straight sections of well using screw downhole motors. Journal of Mining Institute. 2020. Vol. 241. pp. 105–112.
7. Tyncherov K. T., Chervyakov N. I., Selivanova M. V., Kalmykov I. A. Method of increasing the reliability of telemetric well information transmitted by the wireless communication channel. Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering. 2018. Vol. 329, No. 3. pp. 36–43.
8. Zhdanov M. S. Role and value of the oil and gas sector in economy of Russia. Alleya nauki. 2018. Vol. 6, No. 5(21). pp. 823–826.
9. Abramenko A. V., Lazarenko A. O. Influence of oil and gas revenues on the federal budget of the Russian Federation. Finansy i uchetnaya politika. 2020. No. 4(19). pp. 5–10.
10. Gorlov I. V., Lunkova L. G., Melnikov G. S. Oil utilization methods: Current situation and prospects. Fresh Impetuses for the Development : Scientific Research Issues. V International Conference Proceedings. Saratov : Tsifrovaya nauka, 2020. pp. 16–22.
11. Shirobokov P. E. Sucker-rod pumping assembly : Survey. Innovatsii. Nauka. Obrazovanie. 2022. No. 49. pp. 1240–1246.
12. Rogachev M. K., Aleksandrov A. N. Justification of a comprehensive technology for preventing the formation of asphalt-resin-paraffin deposits during the production of highlyparaffinic oil by electric submersible pumps from multiformation deposits. Journal of Mining Institute. 2021. Vol. 250. pp. 596–605.
13. Kostrov S. E., Izofatov S. N., Popelnukha G. V. et al. Submersible unit for telemetry system of submersible centrifugal pump installation for oil production. Patent RF, No. 46889 РФ. Applied: 25.01.2005. Published: 27.07.2005.
14. Moskvina E. Yu., Piven V. V. Calculation of winding temperature of a submersible motor. Izvestiya vuzov. Neft i gaz. 2020. No. 5(143). pp. 64–73.
15. Kovalev V. Z., Balyklov E. S., Khusainov E. I. On some operating modes of a submersible induction electric motor. Vestnik Yugorskogo gosudarstvennogo universiteta. 2022. No. 4(67). pp. 93–102.
16. Biryukov S. V., Kovalev A. Yu., Eremin E. N., Khamitov R. N. Mathematical modeling of asynchronous submersible electric motors in electrical centrifugal pumps. Omskiy nauchnyi vestnik. 2012. No. 1(107). pp. 186–188.
17. Telemetry Systems IRZ TMS. Available at: https://all-pribors.ru/opisanie/81532-21-irztms?
ysclid=ltrceddl26588874381 (accessed: 29.01.2025).
18. Prokopenko N. N., Butyrlagin N. V., Budyakov P. S. Input cascade of highspeed operational amplifier. Informatsionnye tekhnologii. Radioelektronika. Telekommunikatsii. 2013. No. 3. pp. 220–226.
19. Jiménez Carrizosa M., Stankovic N., Vannier J.-C., Shklyarskiy Ya. E., Bardanov A. I. Multiterminal dc grid overall control with modular multilevel converters. Journal of Mining Institute. 2020. Vol. 243. pp. 357–370.
20. Ivanov V. E. A model of a digitally controlled dc amplifier in simintech. Mezhdunarodnyi nauchno-issledovatelskiy zhurnal. 2022. No. 3-1(117). pp. 49–57.
21. Rouholamini M., Wang C., Mohammadian M., Bahari A. Optimal location of step-up transformer in radial distribution networks to enhance static voltage stability. International Transactions on Electrical Energy Systems. 2018. Vol. 28, No. 7. DOI: 10.1002/etep.2557
22. Grevtsev A. N. Temperature effect on set-point position of amplification stage with common emitter. Tendentsii razvitiya nauki i obrazovaniya. 2022. No. 92-12. pp. 67–70.
23. Gogina O. A., Belitsky A. A., Churyumov A. A. Automatic customisation of temperature sensor based on piecewise-line interpolation. Proceedings of the 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering. Saint-Petersburg–Moscow, 2019. pp. 511–513.
24. Wardhana A. W., Ramadhani Y., Priswanto P. Design and simulation of a multistages common-emitter, common-collector, ac voltage amplifier. Jurnal Nasional Teknik Elektro. 2022. Vol. 11, No. 2. DOI: 10.25077/jnte.v11n2.1009.2022
25. Trinh V.-S., Park J.-D. Common-mode stability test and design guidelines for a transformer-based push-pull power amplifier. IEEE Access. 2020. Vol. 8. pp. 42243–42250.
26. Bokhan Yu. I., Varnava A. A. Thermoelectric ceramic element with negative temperature factor of resistance. Problemy infokommunikatsiy. 2018. No. 1(7). pp. 71–76.
27. Andrianov A. V., Zikiy A. N., Kochubey A. S. Broadband medium power amplifier for decimeter waves. Elektrotekhnicheskie i informatsionnye kompleksy i sistemy. 2020. Vol. 16, No. 1. pp. 82–88.
28. Aripova U. Kh., Toshmatov Sh. T., Aripova Z. Kh. Computer simulation of a push–pull power amplifier. Inzhenernaya fizika. 2022. No. 12. pp. 8–16.
29. Aripov Kh. K., Aripova Z. Kh., Toshmatov Sh. T. Composite cascode injection-voltaic transistor. Inzhenernaya fizika. 2021. No. 12. pp. 17–21.
30. Melikyan V. Sh., Babadzhanyan A. A., Baskovchyan A. G. Wide swing folded cascode operational amplifier with comparator. Izvestiya vysokikh tekhnologiy. 2020. No. 2(13). pp. 27–34.
31. Guo D., Zhou Y., Tang X., Zhang Y. Direct comparison of silicon c arbide and silicon diode avalanche shaper in multi-pulse applications. Journal of Crystal Growth. 2022. Vol. 603. ID 127007.
32. Kopytov A. A., Shishkina I. S. Advantages of silicon–carbide diodes in discrete instrumentation. Top-Priority Trends of Innovation in Industry : VI International Conference Proceedings. Kazan, 2021. pp. 96–97.
33. Wu J., Ren N., Guo Q., Sheng K. A comparative study of silicon carbide merged PiN Schottky diodes with electrical-thermal coupled considerations. Materials. 2020. Vol. 13, No. 11. ID 2669.

Language of full-text русский
Полный текст статьи Получить
Назад