| Название |
Unconventional occurrence forms of critical
metals in complex ores and development
of identification methods |
| Информация об авторе |
Institute of Geology named after Academician N. P. Yushkin of Komi Science Center of Ural Branch of RAS (Syktyvkar, Russia)
Kotova O. B., Head of Laboratory, Doctor of Geological and Mineralogical Sciences, Chief Researcher, kotova@geo.komisc.ru Razmyslov I. N., Junior Researcher, razmyslov-i@mail.ru
All-Russian Research Institute of Mineral Resources named after N. M. Fedorovsky (Moscow, Russia)
Ozhogina E. G., Head of Mineralogical Department, Doctor of Geological and Mineralogical Sciences, ojogina@vims-geo.ru |
| Реферат |
Mineral processing mineralogy methodologies play a crucial role in the predictive assessment of rare and critical elements in ores of ferrous, non-ferrous, noble metals, and non-metallic minerals. These assessments fundamentally guide the feasibility studies and strategic planning of raw material development projects, including the evaluation of potential substitutes for strategic materials. This study focuses on the detection, identification, and characterization of unconventional occurrence forms of critical metals in ores and rocks of diverse compositions and genesis, which contain these elements in trace amounts. An optimized suite of analytical techniques was employed to obtain reliable data, facilitating the development and refinement of physical and chemical extraction, leaching, and recovery methods for valuable metals. The capabilities of mineralogical analysis techniques for identifying and diagnosing rare earth minerals—such as members of the crandallite group and svanbergite—were demonstrated on pyrochlore-monazite-crandallite ores from the Tomtorskoye deposit and bauxite ores from the Sredny Timan deposits. It was established that rare earth metals occur both as discrete mineral phases and as isomorphic substitutions within the crystal lattices of ore-forming minerals. Examples of optimally selected analytical methods are presented and discussed. Selected analytical methods, including Raman spectroscopy and X-ray diffraction (XRD), showed excellent concordance, highlighting Raman spectroscopy’s potential as a rapid and reliable diagnostic tool for complex polymineralic materials. The study emphasizes the importance of examining poorly studied minerals with potential industrial significance. For instance, svanbergite, commonly found in these ores, shows promising applications in environmental and energy-related technologies. This research was conducted under the State Assignment of the Institute of Geology of the Komi Scientific Center of the Ural Branch of RAS. |
| Библиографический список |
1. Fortier S. M., Hammarstrom J. M., Ryker S. J., et al. USGS critical minerals review. Mining Engineering. 2019. Vol. 71, Iss. 5. pp. 35–47. 2. Murashov K. Yu., Bortnikov N. S., Volkov A. V., et al. Problems of development of the mineral resource base of the high-tech industry of Russia. Geologiya Rudnykh Mestorozhdeniy. 2023. Vol. 65, No. 5. pp. 371–386. 3. Pashkevich N. V., Khloponina V. S., Pozdnyakov N. A., Avericheva A. A. Analysing the problems of reproducing the mineral resource base of scarce strategic minerals. Zapiski Gornogo Instituta. 2024. Vol. 270. pp. 1004–1023. 4. State report «On the state and use of the mineral resources of the Russian Federation in 2023». Moscow, 2024. 709 p. 5. Hussain Z., Dwivedi D., Kwon I. Recovery of rare earth elements from low-grade coal fly ash using a recyclable protein biosorbent. Frontiers in Bioengineering and Biotechnology. 2024. Vol. 12. DOI: 10.3389/fbioe.2024.1385845 6. Ma K., Zhang J., Deng Q., et al. Study on REE occurrence in a svanbergite and basic ore characteristics. Physicochemical Problems of Mineral Processing. 2022. Vol. 58, Iss. 3. DOI: 10.37190/ppmp/147377 7. Park D. M., Brewer A., Reed D. W., et al. Recovery of rare earth elements from low-grade feedstock leachates using engineered bacteria. Environmental Science & Technology. 2017. Vol. 51, Iss. 22. pp. 13471–13480. 8. Order of the Government of the Russian Federation dated 11.07.2024 No. 1838-r «On approval of the Strategy for the development of the mineral resource base of the Russian Federation until 2050». Moscow, 2024. 35 p. 9. Vikentiev I. V. Critical and strategic minerals in the Russian Federation. Geologiya Rudnykh Mestorozhdeniy. 2023. Vol. 65, No. 5. pp. 463–475. 10. Konnova N. I. Ore and technological mineralogy. Krasnoyarsk: Siberian Federal University, 2019. 176 p. 11. Morozova L. N., Bazai A. V. Spodumene — the main source of lithium in rare-metal pegmatites of the Kolmozero deposit. Proc. of the Fersman scientific session of the GI KSC RAS. 2020. No. 17. pp. 369–373. 12. Belyaev V. V., Yatskevich B. A., Shvetsova I. V. Devonian Timanian bauxites. Syktyvkar, 1997. 192 p.
13. Likhnikevich E. G. Anticipatory mineralogy research — basis for predicting the technological properties and choice of optimum technological solutions. Razvedka i Okhrana Nedr. 2018. No. 10. pp. 24-29. 14. Cherepanov A. A., Berdnikov N. V., Shtareva A. V. Rare earth elements and precise metals in phosphorites of the Gremuchy outcrop, Lesser Khingan, Far East of Russia. Tikhookeanskaya Geologiya. 2019. Vol. 38, No. 6. pp. 99–107. 15. Bykhovsky L. Z., Kudrin V. S., Industrial types of rare metal deposits. Moscow: Geoinformark, 2001. 64 p. 16. Lazareva E. V., Zhmodik S. M., Dobretsov N. L., et al. Major minerals of abnormally high-grade ores of the Tomtor deposit (Arctic Siberia). Geologiya i Geofizika. 2015. Vol. 56, No. 6. pp. 1080–1115. 17. Lapin A. V., Tolstov A. V., Kulikova I. M. Some features of the mineral composition, structure and genesis of the unique complex rare metal ores of the Tomtor deposit. New data on mineralogy and geochemistry of rare metal deposits. Moscow: IMGRE, 2017. pp. 17–51. 18. Likhnikevich E. G., Ozhogina E. G., Astakhova Yu. M. Influence of the mineral composition of pyrochlore-monazitecrandallite ores on the technological parameters of their processing. Zoloto i Tekhnologii. 2016. No. 4. pp. 68–71. 19. Tolstov A. V., Konoplev A. D., Kuzmin V. I. Features of the formation of the unique rare metal deposit Tomtor and assessment of the prospects for its development. Razvedka i Okhrana Nedr. 2011. No. 6. pp. 20–26. 20. Krivovichev V. G. Mineralogical dictionary. St. Petersburg: Publishing House of St. Petersburg University. 2008. 556 p. 21. Pozharitskaya L. K., Samoilov V. S. Petrology, mineralogy and geochemistry of carbonatites of Eastern Siberia. Moscow: Nauka, 1972. 267 p. 22. Likhnikevich E. G., Petrova N. V., Anufrieva S. I. Complex processing of niobium-rare earth-phosphate ores by hydrometallurgical method. Razvedka i Okhrana Nedr. 1999. No. 1. pp. 42–44. 23. Delitsyn L. M., Melentyev G. B., Tolstov A. V., et al. Technological problems of Tomtor and their solution. Redkie Zemli. 2015. No. 2. pp. 164–179. 24. Derevyanko M. S., Zinoveev D. V., Statnik E. S., Petelin A. L. A Study of the behaviour of ferromanganesian rare-metal ore components of the Tomtor deposit in hydrogen reduction processes. Mezhdunarodnyi Nauchno-issledovatelskiy Zhurnal. 2023. No. 5. DOI: 10.23670/irj.2023.131.23 25. Kremenetsky A. A., Kalish E. A. Complex rare metal deposits of Russia and the main directions of increasing their investment attractiveness. Razvedka i Okhrana Nedr. 2014. No. 9. pp. 3–11. 26. Tolstov A. V., Pokhilenko N. P., Lapin A. V., et al. Investment appeal of Tomtor deposit and prospect of its increase. Razvedka i Okhrana Nedr. 2014. No. 9. pp. 25–30. 27. Polyakov E. G., Nechaev A. V., Smirnov A. V. Metallurgy of rare earth metals. Moscow: Metallurgizdat. 2018. 731 p. 28. Kotova O. B., Ozhogina E. G., Shieng San, Razmyslov I. N. Technological mineralogy as a framework for the integrated mineral mining : A case-study of the Upper Shchugor bauxite deposit. Gornyi Zhurnal. 2021. No. 11. pp. 21–26. 29. Mordberg L. E. Thorium in crandallite-group minerals: an example from a Devonian bauxite deposit, Timan, Russia. Mineralogical Magazine. 2004. Vol. 68, Iss. 3. pp. 489–497. 30. Kotov L. N., Lasyok M. P., Dong F., Wei Zh. Electroacoustic properties of various types of quartz in the finely dispersed state. Vestnik Geonauk. 2023. No. 2. pp. 26–30. |