Journals →  Obogashchenie Rud →  2025 →  #4 →  Back

BENEFICIATION PROCESSES
ArticleName Study of vibrational segregation of material to intensify the screening process
DOI 10.17580/or.2025.04.02
ArticleAuthor Romashev A. O., Balashov A. O., Gatiatullin B. L., Nikolaeva N. V.
ArticleAuthorData

Empress Catherine II Saint Petersburg Mining University (Saint Petersburg, Russia)
Romashev A. O., Associate Professor, Candidate of Engineering Sciences, Associate Professor, romashev_ao@pers.spmi.ru
Balashov A. O., Postgraduate Student, s191182@stud.spmi.ru
Gatiatullin B. L., Postgraduate Student, Gatiatullin_BL@pers.spmi.ru
Nikolaeva N. V., Associate Professor, Candidate of Engineering Sciences, Associate Professor, Nikolaeva_NV@pers.spmi.ru

Abstract

This article provides a detailed analysis of vibrational segregation during dry screening of carbonaceous shungite-type rocks. The study focuses on how vibration exposure time, material layer thickness, and structure affect screening efficiency and particle size distribution. An indicator quantifying the degree of segregation within the material layer is proposed and validated to assess material redistribution under varying conditions. The research combined discrete element method (DEM) numerical modeling with experimental verification using a custom setup, revealing nonlinear dependencies between process parameters and the recovery of target particle classes into lower layers. The DEM model identified key kinetic patterns governing particle dynamics within the layer. In the second stage of the study, the impact of layer thickness on target particle redistribution was examined. A robust quadratic relationship was established linking vibration duration, layer thickness, and the segregation indicator. Experimental screening confirmed that optimizing feed layer structure can enhance process efficiency. Depending on the segregation indicator, recovery of the target size fraction in the undersize product increased from 2.59 % to 7.2 %. Accordingly, a correction factor is proposed for screening models to incorporate efficiency improvements achievable through feed pre-structuring.
The study was carried out under grant No. 23-47-00109 issued by the Russian Science Foundation.

keywords Vibrational segregation, screening, modeling, discrete element method (DEM), particle size distribution, process optimization, efficiency improvement
References

1. Romasheva N. V., Babenko M. A., Nikolaichuk L. A. Sustainable development of the Russian Arctic region: environmental problems and ways to solve them. Gornyi Informatsionno-analiticheskiy Byulleten'. 2022. No. 10-2. pp. 78—87.
2. Hughes N., le Roux M., Campbell Q. P., Nakhaei F. A review of the dry methods available for coal beneficiation. Minerals Engineering. 2024. Vol. 216. DOI: 10.1016/j.mineng.2024.108847
3. Liu W., Wang D., Dong L., Zhou E., Aleksandrova T., Zhou Ch., Duan Ch. Fluidization stability and periodic fluctuations in gas–solid separation fluidized bed using Geldart A dense medium. Particuology. 2024. Vol. 90. pp. 522–534.
4. Dong L., Wang Z., Zhou E., et al. A novel dry beneficiation process for coal. International Journal of Coal Preparation and Utilization. 2022. Vol. 42, Iss. 4. pp. 1105–1125.

5. Afanasova A. V., Aburova V. A. Growth of low-dimensional structure noble metals in carbonaceous materials under microwave treatment. Gornyi Informatsionno-analiticheskiy Byulleten'. 2024. No. 1. pp. 20–35.
6. Zhou C., Liu X., Zhao Yu., et al. Recent progress and potential challenges in coal upgrading via gravity dry separation technologies. Fuel. 2021. Vol. 305. DOI: 10.1016/j.fuel.2021.121430
7. Jiang H., Wang W., Zhou Zh., et al. Simultaneous multiple parameter optimization of variable-amplitude equalthickness elastic screening of moist coal. Powder Technology. 2019. Vol. 346. pp. 217–227.
8. Akbari H., Ackah L., Mohanty M. Performance optimization of a new air table and flip-flow screen for fine particle dry separation. International Journal of Coal Preparation and Utilization. 2020. Vol. 40, Iss. 9. pp. 581–603.
9. Aleksandrova T. N., Kuznetsov V. V., Prokhorova E. O. Investigation of interfacial characteristics as a key aspect of the justification of the reagent regime for coal flotation. Minerals. 2025. Vol. 15. DOI: 10.3390/min15010076
10. Peng L., Jiang H., Chen X., et al. A review on the advanced design techniques and methods of vibrating screen for coal preparation. Powder Technology. 2019. Vol. 347. pp. 136–147.
11. Olumide Ogunmodimu, Indresan Govender, Aubrey Njema Mainza, Jean-Paul Franzidis. Development of a mechanistic model of granular flow on vibrating screens. Minerals Engineering. 2021. Vol. 163. DOI: 10.1016/j.mineng.2020.106771
12. Shen G., Tong X. Particle stratification of a vibrating screen with translation-swing composite motion. Journal of Vibroengineering. 2020. Vol. 22, Iss. 3. pp. 498–508.
13. Pelevin A. E. Probability of bolting particles through the mesh and the process of segregation on a bolting machine. Izvestiya Vysshikh Uchebnykh Zavedeniy. Gornyi Zhurnal. 2011. No. 1. pp. 119–129.
14. Blekhman I. I., Vaisberg L. А. Toward a theory of vibrational segregation. Obogashchenie Rud. 2014. No. 5. pp. 35–40.
15. Gritsenko M. A., Aleshina A. P., Brik E. R., Ogurtzov V. A. Study of particle segregation in fluidized bed in the process of screening of granular materials with high content of fine fractions in feedstock. Vestnik Moskovskogo Gosudarstvennogo Stroitelnogo Universiteta. 2017. Vol. 12, Iss. 1. pp. 70–76.
16. Blekhman I. I., Blekhman L. I., Vasilkov V. B., Yakimova K. S. The theory of gradient vibratory segregation effect as applied to screening process. Obogashchenie Rud. 2015. No. 6. pp. 19–22.
17. Pelevin A. E. Iron ore beneficiation technologies in Russia and ways to improve their efficiency. Zapiski Gornogo Instituta. 2022. Vol. 256. pp. 579–592.
18. Pelevin A. E. Scientific foundations of the process of fine hydraulic vibrating screening and the development of new schemes for the beneficiation of magnetite ores: diss. for the degree of Doctor of Engineering Sciences. Ekaterinburg, Ural State Mining University, 2011. 399 p.
19. Lyashenko V. I., Dyatchin V. Z., Franchuk V. P. Improving the efficiency and reliability of the vibrating grizzly feeders, screens and GIC-type cranes for mining industry. Gornyi Informatsionno-analiticheskiy Byulleten'. 2016. No. 6. pp. 33–49.
20. Shchiptsov V. V., Kevlich V. I., Pervunina A. V. Shungite-bearing rocks of the Zazhoginskoe ore field (Republic of Karelia): geology to processing technology. Obogashchenie Rud. 2021. No. 6. pp. 23–28.
21. Aleksandrova Т. N., Afanasova A. V., Aburova V. A. «Invisible» noble metals in carbonaceous rocks and beneficiation products: feasibility of detection and coarsening. Gornye Nauki i Tekhnologii. 2024. Vol. 9, Iss. 3. pp. 231–242.
22. Harzanagh A. A., Orhan E. C., Ergun S. L. Discrete element modelling of vibrating screens. Minerals Engineering. 2018. Vol. 121. pp. 107–121.
23. Beloglazov I., Plaschinsky V. Development MPC for the grinding process in SAG mills using DEM investigations on liner wear. Materials. 2024. Vol. 17, Iss. 4. DOI: 10.3390/ma17040795
24. Elskamp F., Kruggel-Emden H. Review and benchmarking of process models for batch screening based on discrete element simulations. Advanced Powder Technology. 2015. Vol. 26, Iss. 3. pp. 679–697.
25. Zhang C., Zou Yu., Gou D., Yu A., Yang R. Experimental and numerical investigation of particle size and particle strength reduction in high pressure grinding rolls. Powder Technology. 2022. Vol. 410. DOI: 10.1016/j.powtec.2022.117892
26. Wu Sh., Wang G., Fan L., et al. A method to determine the bonded-particle model parameters for simulation of ores. Particuology. 2024. Vol. 86. pp. 24–38.
27. Shibaeva D. N., Tereshchenko S. V., Asanovich D. A., Shumilov P. A. On the need to classify rock mass fed to dry magnetic separation. Zapiski Gornogo Instituta. 2022. Vol. 256. pp. 603–612.
28. Jahani M., Farzanegan A., Noaparast M. Investigation of screening performance of banana screens using LIGGGHTS DEM solver. Powder Technology. 2015. Vol. 283. pp. 32–47.
29. Feoktistov A. Yu., Kamenetskii A. A., Blekhman L. I., Vasilkov V. B., Skryabin I. N., Ivanov K. S. The application of discrete element method to mining and metallurgy process modeling. Zapiski Gornogo Instituta. 2011. Vol. 192. pp. 145–149.
30. Chen B., Wang B., Yan J., Han J. Optimization research on screening parameters of elliptical vibrating screen based on DEM theory. Proc. of the Institution of Mechanical Engineers Part E: Journal of Process Mechanical Engineering. 2022. Vol. 236, Iss. 5. pp. 1992–2000.
31. Blekhman I. I., Blekhman L. I., Vaisberg L. А., Vasilkov V. B. Gradient vibratory segregation in loose materials size classification processes. Obogashchenie Rud. 2015. No. 5. pp. 20–24.
32. Arsentyev V. А., Blekhman I. I., Blekhman L. I., Vasilkov V. B., Feoktistov А. Yu., Yakimova K. S. Loose material classification under vibratory segregation conditions — device, modeling, experiment. Obogashchenie Rud. 2010. No. 5. pp. 13–16.
33. Wensrich C. M., Katterfeld A. Rolling friction as a technique for modelling particle shape in DEM. Powder Technology. 2012. Vol. 217. pp. 409–417.
34. Zhukovskiy Yu. L., Korolev N. A., Malkova Ya. M. Monitoring of grinding condition in drum mills based on resulting shaft torque. Zapiski Gornogo Instituta. 2022. Vol. 256. pp. 686–700.
35. Xu l., Luo K., Zhao Yo., et al. Influence of particle shape on liner wear in tumbling mills: A DEM study. Powder Technology. 2019. Vol. 350. pp. 26–35.
36. Elskamp F., Kruggel-Emden H., Hennig M., Teipel U. A strategy to determine DEM parameters for spherical and non-spherical particles. Granular Matter. 2017. Vol. 19. DOI: 10.1007/s10035-017-0710-0
37. Starodubov A. N., Kadochigova A. N., Kaplun A. V. Application of the discrete element method for simulation of coal mining by a cutter-loader in a working face. Gornaya Promyshlennost'. 2023. No. S2. pp. 150–154.
38. Galevsky G. V., Protopopov E. V., Temlyantsev M. V. Plasma shungit processing. Vestnik Kuzbasskogo Gosudarstvennogo Tekhnicheskogo Universiteta. 2014. No. 4. pp. 110–112.
39. Moraes M. N., Galery R., Mazzinghy D. B. A review of process models for wet fine classification with high frequency screens. Powder Technology. 2021. Vol. 394. pp. 525–532.

Language of full-text russian
Full content Buy
Back