Журналы →  Tsvetnye Metally →  2025 →  №8 →  Назад

HISTORY OF METALLURGY
Название History of the discovery of rare earth elements. Element 61
DOI 10.17580/tsm.2025.08.10
Автор Detkov P. G., Drobot D. V.
Информация об авторе

JSC Solikamsk Magnesium Plant, Solikamsk, Russia

P. G. Detkov, Board Member, Candidate of Technical Sciences, е-mail: p.detkov@yandex.ru

 

Independent Expert, Moscow, Russia
D. V. Drobot, Doctor of Chemical Sciences, e-mail: dvdrobot@mail.ru

Реферат

In 1914, the English physicist G. Moseley reported that he had discovered a pattern linking the frequency of the spectral lines of characteristic X-ray radiation with the atomic number of an element in the periodic table. He found that there are unfilled positions in the periodic table, for example between neodymium and samarium (element 61). Information about an undiscovered element number 61 prompted many scientists to search for this element. In 1926, University of Illinois researchers J. A. Harris, L. F. Yntema, and B. S. Hopkins announced the discovery of element 61, which they named “illinium.” However, scientists L. Rolla and L. Fernandez from the University of Florence disputed their priority in discovering this element. According to the Italian researchers, they deposited two articles on the discovery of element 61, which they named “florentium,” in sealed envelopes at the Accademia Nazionale dei Lincei back in June 1924. In addition to the disagreement regarding the priority in the discovery, there were also doubts about the very fact of discovering the new element. In 1934, the German chemist Ida Noddack published her research on the existence of element 61. As a result of her work, no signs of the presence of element 61 in minerals were found. Ida Noddack believed that her research should have been able to detect with certainty an element that would have a concentration in the material 10 million times lower than the concentrations of its neighbors neodymium and samarium. A possible reason for the absence of this element, according to Ida Noddack, could be its instability. In 1934, the German physicist Josef Mattauch formulated his isobar rule, according to which only unstable radioactive isotopes were possible for element 61, which made it possible to explain the great rarity of this element. By the mid-1930s, physicists began to master the production of artificial radionuclides using nuclear reactions. In 1938, it was announced that 15 new isotopes of rare earth elements had been produced by bombarding rare earth targets with neutrons and deuterons. The researchers believed that they had, among other things, succeeded in obtaining the isotope of element 61 for the first time. Physicists proposed to give element 61 a new name, “cyclonium”, taking into account the method of synthesizing new radioisotopes using a cyclotron. In 1947, scientists J. A. Marinsky, L. E. Glendenin and K. D. Coryell reported the chemical identification and discovery of element 61, for the isolation of which the method of ion-exchange chromatography was used. The name “promethium” (Pm) was proposed for the new element. On September 5, 1949, this name was officially accepted by the International Chemical Union (IUPAC). And it was not until 1968 that the presence of the isotope Pm-147 was detected in nature.

Ключевые слова Discovery, rare earth element, G. Moseley, element 61, illinium, florentium, cyclonium, J. A. Marinsky, L. E. Glendenin, K. D. Coryell, promethium
Библиографический список

1. Mendeleev D. I. Periodic Law of Chemical Elements (July/August 1871). In the collection D. I. Mendeleev. Periodic Law. Edited by B. M. Kedrov. Moscow: Izdatelstvo AN SSSR, 1958. pp. 102–176.
2. Moseley H. G. J. XCIII. The high-frequency spectra of the elements. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 1913. Vol. 26, Iss. 156. pp. 1024–1034.
3. Moseley H. G. J. LXXX. The high-frequency spectra of the elements. Part II. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 1914. Vol. 27, Iss. 160. pp. 703–713.
4. Urbain G. Sur un nouvel élément qui accompagne le lutécium, et le scandium dans le sterres de la gadolinite: le celtium. Comptesrendus hebdomadaires des séances de l’Académie des Science. 1911. Vol. 152. pp. 141–143.
5. Eder J. M. Das Bogenspektrum des Samariums. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften. Mathematisch-Naturwissenschaftliche Klasse. 1916. B. 125, 2 Abt-a. S. 883–897.
6. Eder J. M. Das Bogenspektrum des Europiums und eines bisher unbekannten, zwischen dem Europium und Samarium liegenden Elementes, des Eurosamariums. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften. Mathematisch-Naturwissenschaftliche Klasse. 1917. B. 126, 2 Abt-a. S. 473–531.
7. Kiess C. C. Wave length measurements in the arc spectra of neodymium and samarium. Scientific Papers of the Bureau of Standarts. 1922. Vol. 18. pp. 201–219.
8. Harris J. A., Yntema L. F., Hopkins B. S. The element of atomic number 61; Illinium. Nature. 1926. Vol. 117, No. 2953. pp. 792–793.
9. Harris J. A., Yntema L. F., Hopkins B. S. Special article. Sillenium. Science. 1926. Vol. 63, No. 1640. pp. 575, 576.
10. Brauner B. The new element of atomic number 61: Illinium. Nature. 1926. Vol. 118, No. 2959. pp. 84, 85.
11. Meyer R. J., Schumacher G., Kotowski A. Über das element 61 (Illenium). Naturwissenschaften. 1926. Vol. 14, Iss. 33. pp. 771, 772.
12. Cork J. M., James C., Fogg H. C. The concentration and identification of the element of atomic number 61. Proceedings of the National Academy of Science of the United States of America. 1926. Vol. 12, No. 12. pp. 696–699.
13. Auer von Welsbach C. Über einige versuche zur auffindung des elementes Nr. 61. Chemiker-Zeitung. 1926. No. 118. S. 990.
14. Rolla L., Fernandes L. Florentium or Illinium? Nature. 1927. Vol. 119, No. 3000. pp. 637, 638.
15. Rolla L., Fernandes L. Ricerche sopra l’elemento a numeroatomico 61 (Nota I, II & III). Gazzetta Chimica Italiana. 1926. Vol. 56. pp. 435–436, 688–694, 852–864.
16. Noyes W.A. Florentium or Illinium? Nature. 1927. Vol. 120, No. 3009. p. 14.
17. Prandtl W. Auf der suche nach dem Element Nr. 61. Chemisches Zentralblatt. 1926. B. 2, No. 10. S. 1388.
18. Prandtl W.,Grimm A. Auf der suche nach dem Element Nr. 61 (II). Chemisches Zentralblatt. 1926. B. 2, No. 25. S. 3026.
19. Marsh J. K. CCCXI. The order of fractionation of rare-earth bromates, and a search for illinium. Journal of the Chemical Society. 1929. pp. 2387–2389.
20. Prandtl W. Zur frage nach dem vorkommen der mangan-homologen Nr. 43, 61 und 75. Berichte der Deutschen Chemischen Gesellschaft (A and B Series). 1927. Vol. 60, No. 3. pp. 621–623.
21. Takvorian S. Recherche de d’élément 61 au moyen de la spectrographie optique. Comptesrendus hebdomadaires des séances de l’Académie des Science. 1931. Vol. 192. pp. 1372–1373.
22. Curie M., Takvorian S. Radioactivité d’unfractionnement néodyme-samarium. L‘élément 61. Comptesrendus hebdomadaires des séances de l’Académie des Science. 1933. Vol. 196. pp. 923–925.
23. Curie M., Takvorian S. Fractionnement de l’actinium en présence de terres rares. Comptesrendus hebdomadaires des séances de l’Académie des Science. 1934. Vol. 198. pp. 1687–1689.
24. Noddack I. Das periodische System der Elemente und seine Lücken. Angewandte Chemie. 1934. B. 47, Nr. 20. S. 301–336.
25. Hevesy G., Pahl M. Radioactivity of samarium. Nature. 1932. Vol. 130, No. 3292. pp. 846, 847.
26. Mattauch J. Zur systematik der isotopen. Zeitschrift für Physik. 1934. B. 91. pp. 361–371.
27. Pool M. L., Quill L. L. Radioactivity induced in the Rare Earth Elements by fast neutrons. The Physical Review. 1938. Vol. 53, Iss. 6. pp. 437–446.
28. Law H. B., Pool M. L., Kurbatov J. D., Quill L. L. Radioactive isotopes of Nd, Il and Sm. The Physical Review. 1941. Vol. 53, Iss. 11. p. 936.
29. Kurbatov J. D., MacDonald D. C., Pool M. L., Quill L. L. Further progress on the study of the radioactive isotopes of the Nd–Il–Sm region. The Physical Review. 1942. Vol. 61, Iss. 1–2. p. 106.
30. Kurbatov J. D., Pool M. L. Progress report on the radioactivities in the illinium region. The Physical Review. 1943. Vol. 63, Iss. 11–12. p. 463.
31. Marinsky J. A., Glendenin L. E., Coryell C. D. The chemical identification of radioisotopes of neodymium and of element 61. Journal of the American Chemical Society. 1947. Vol. 69, No. 11. pp. 2781–2785.
32. Marinsky J. A. The search for element 61. Episodes from the history of Rare Earth Elements. Evans C.H. (ed.). Dordrecht; London: Kluwer Academic, 1996. pp. 91–107.
33. Paneth F. A. The making of the missing chemical elements. Nature. 1947. Vol. 159. pp. 8–10.
34. Attrepp M., Kuroda P. K. Promethium in pitch blende. Journal of Inorganic and Nuclear Chemistry. 1968. Vol. 30, Iss. 3. pp. 699–703.
35. Baranov N. N., Mandrugin A. A. Fundamentally new multifunctional power source with record continuous operation time. Izvestiya RAN. Energetika. 2019. No. 1. pp. 82–99.
36. Murphy J. W., Frye C. D., Henderson R. F., Stoyer M. A. et al. Demonstration of a three-dimensionally structured betavoltaic. Journal of Electronic Materials. 2021. Vol. 50. pp. 1380–1385.
37. Tsvetkov L. A., Tsvetkov S. L., Pustovalov A. A., Verbetskii V. N. et al. Radionuclides for betavoltaic nuclearbatteries: vicroscale, energy-intensive batteries with long-term service life. Radiochemistry. 2022. Vol. 64, No. 3. pp. 360–366.
38. Naseem M. B., Kim H. S., Lee J., Kim C. H., In S. I. Betavoltaic nuclear battery: a review of recent progress and challengesas an alternative energy source. The Journal of Physical Chemistry C. 2023. Vol. 127, Iss. 16. pp. 7565–7579.
39. Tchouadep G. S., Tchédré E. K., Sourabié I., Zebro I., Zoungrana M. Modelling the influence of low energy electrons emitted from Pm-147 on the performance of a silicon PV cell. International Journal of Innovation and Applied Studies. 2022, Vol. 36, No. 1. pp. 205–212.
40. Ghasemabadi D., Dizaji H. Z., Abdollahzadeh M. Investigation and analysis of beta radioisotopes for optimal use in betavoltaic batteries. Nuclear Science and Engineering. 2025. Vol. 199, No. 3. pp. 476–489.

Language of full-text русский
Полный текст статьи Получить
Назад