| Название |
Technology of profiling a workpiece on forging rolls to reduce metal consumption
and analysis of its stress-strain state |
| Информация об авторе |
Moscow State Technological University “STANKIN”, Moscow, Russia
S. A. Rogulin, Postgraduate Student, Dept. of Plastic Deformation Systems, e-mail: rogulin.sergei.stankin@yandex.ru E. N. Sosenushkin, Dr. Eng., Prof., Dept. of Plastic Deformation Systems, e-mail: sen@stankin.ru E. A. Yanovskaya, Cand. Eng., Associate Prof., Dept. of Applied Mathematics, e-mail: elena_yanovskaya@bk.ru |
| Реферат |
When implementing the technology of treatment by pressure of elongated forgings on crank hot forging presses, there are a number of restrictions on the use of blanking grooves. Upsetting operations, metal collection by upsetting in conical cavities of the tool, extrusion (forward, backward, combined) with a limitation on the length of the blank are allowed. However, when applying a deforming force transverse to the longitudinal axis of the blank, blanking-preliminary grooves, such as edging, blocking and finishing, are not designed, but their implementation is transferred to another type of equipment built into the process line. In our example, such auxiliary equipment is forging rolls. To reduce die steel consumption, the tool for them is made in the form of sectors. Several pairs of sectors-dies, according to the number of necessary rolling transitions, are placed on the working shafts of the forging rolls. An important circumstance is not only the possibility of placement, but also reliable fastening and fixation of the sectors on the shafts. The diagram of one of the clamping options is given in the article. According to known methods, the calibers are designed in accordance with the required dimensions of the workpiece. In addition, the results of modeling the rolling process of a profiled workpiece of the required shapes and sizes of characteristic sections are obtained. An analysis of the stress intensity and strain intensity, which are derivatives of tensor invariants, is carried out in a time-varying local deformation center of the workpiece metal, profiled using the technological operation of rolling with sector dies in grooves of constant cross section. The studies were carried out by computer modeling in the DEFORM-3D software package based on the finite element method (FEM). The results of the analysis are the dependencies of the change in stress and strain intensities at five monitored points of the cross section of the workpiece at three stages of rolling in oval and round calibers, as well as an assessment of the exhaustion of the metal plasticity resource according to the Cockcroft-Latham criterion. |
| Библиографический список |
1. Zhivov L. I., Ovchinnikov A. G., Skladchikov E. N. Forging and stamping equipment: textbook for universities. Edited by L. I. Zhivov. Moscow: Izdatelstvo MGTU imeni N. E. Baumana, 2006. 560 p. 2. Erksleben S., Petrov A. N., Petrov M. A. Rolling of measured billets on LASCO machines. Izvestiya TulGU. Tekhnicheskie nauki. 2014. Iss. 10. P. 2. pp. 168-177. 3. Ilyushin A. A. Works (1946-1966). Vol. 2. Plasticity. Authors E. A. Ilyushina, M. R. Korotkina. Moscow: FIZMATLIT, 2004. 430 p. 4. Zhou J., Jia Z., Liu H., Wang M. A study on simulation of deformation during roll-forging process using system of special shaped and hat groove. Rev. Adv. Mater. Sci. 2013. Vol. 33. pp. 354-359. 5. Grass H., Krempaszky C., Werner E. 3-D FEM-simulation of hot forming processes for the production of a connecting rod. Computational Materials Science. 2006. Vol. 36. pp. 480–489. 6. Ru Xiong Li, Song Hua Jiao. Roll forging technology and 3D finite element simulation of automobile front axle. Applied Mechanics and Materials. 2012. Vols. 178-181. pp. 2845-2849. 7. Vlasov A. V. et al. Finite element modeling of technological processes of forging and die forging: tutorial. Moscow: Izdatelstvo MGTU imeni N. E. Baumana, 2019. 383 p. 8. Zhuang W., Hua L., Wang X., Liu Y., Han X., Dong L. Numerical and experimental investigation of roll-forging of automotive front axle beam. Int. J. Adv. Manuf. Technol. 2015. Vol. 79. pp. 1761–1777. 9. Jia Zhi, Zhou Jie, Ji Jin-jin. New type of groove used to improve friction in roll forging. J. Cent. South Univ. 2014. Vol. 21. pp. 493−499. 10. Pokras I. B., Akhmedzyano E. R., Zhitnikov A. S. Improving the process of developing rolling technology using the equivalent strip method. Intellektualnye sistemy v proizvodstve. 2013. No. 1 (21). pp. 91-97. 11. Volodin I. M., Zolotukhin P. I., Karpaytis E. P., Volodin A. I., Romanenko E. F. Influence of roll springback on the process of rolling billets in grooves. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Tekhnika i Tekhnologii. 2016. No. 4 (21). pp. 36-45. 12. Zolotukhin P.I., Volodin I.M., Martyugin V.S., Karpaytis E.P. Springing of forging rolls of ARWS-1 – ARWS-2a models. Izvestiya TulGU. Tekhnicheskie nauki. 2012. Iss. 6. pp. 65-71. 13. Kokhan L. S., Punin V. I., Rempel G. B. Study of the density of materials after rolling. Izvestiya vuzov. Mashinostroenie. 2014. No. 2. pp. 40-45. 14. Kokhan L. S., Rempel G.B. Optimization of the grooving process during Kokhan rolling. Stroitelnaya mekhanika inzhenernykh konstruktsiy i sooruzheniy. 2013. No. 4. pp. 43-47. 15. Babkin A. V., Selivanov V. V. Fundamentals of continuum mechanics: textbook for universities. Moscow: Izdatelstvo MGTU imeni N. E. Baumana, 2004. 376 p. 16. Sosenushkin E. N., Sosenushkin A. E., Kadymov E. A. et. al. Method of manufacturing wrenches by plastic deformation. Patent RF, No. 2784307. Applied: 09.12.2021. Published: 23.11.2022. Bulletin No. 33. 17. Sosenushkin E. N., Sosenushkin A. E., Kadymov E. A. et al. Method of manufacturing wrenches by plastic deformation. Patent RF, 2781825. Applied: 09.12.2021. Published: 18.10.2022. Bulletin No. 29. 18. Kozhevnikova G. V. Study of the kinematics of metal flow during cross-wedge rolling using computer modeling. Vestsi NAN Belarusi. Ser. Fiz.-tekhn. navuk. 2013. No. 1. pp. 47–53. 19. Zolotukhin P. I., Volodin I. M., Karpaytis E. P. Modeling of hot rolling of billets in oval and round grooves. Izvestiya TulGU. Tekhnicheskie nauki. 2012. Iss. 10. pp. 115-121. 20. Sosenushkin E. N., Rogulin S. A., Gusev D. S. Modeling the process of rolling a profiled billet for wrench forging. Kuznechno-shtampovochnoe proizvodstvo. Obrabotka materialov davleniem. 2023. No. 12. pp. 36–42. 21. Kokhan L. S., Aldunin A. V., Rempel G. B. Rolling of profiles with a rhombic cross-section. Izvestiya vuzov. Chernaya Metallurgiya. 2013. No. 56 (1). pp. 13-16. 22. Pankratov D. D., Avvakumov I. I. Determination of the need for rolling of cylindrical billets. Quality in production and socio-economic systems: collection of scientific articles of the 10th International scientific and technical conference. South-West State University. Kursk, 2022. pp. 317-321. 23. Burko V. A. Basic methods of obtaining profiled billets in resource-saving technologies of die forging. Visnik Priazovskogo derzhavnogo tekhnichnogo universitetu. Seriya: Tekhnichni nauki. 2012. Iss. 24. pp. 75-82. 24. GOST 2839–80. Double-ended open spanners. Constuctions and dimensions. Introduced: 01.01.1981. 25. GOST 4543–2016. Structural alloy steel products. Specifications. Introduced: 01.10.2017. 26. Forging and stamping: reference book. In 4 volumes. Volume 2. Hot die forging. 2nd edition revised and enlarged. Edited by E. I. Semenov. Moscow: Mashinostroenie, 2010. 720 p. 27. Karpaytis E. P., Zolotukhin P. I., Volodin I. M. Design of tools for hot rolling of billets. Izvestiya MGTU «MAMI». 2013. No. 1 (15). Vol. 2. pp. 76-79. 28. Rogulin S. A., Sosenushkin E. N. Study of technological parameters of hot deformation operations of the “wrench” type forgings. Izvestiya TulGU. Tekhnicheskie nauki. 2023. Iss. 5. pp. 376–383. DOI: 10.24412/2071-6168-2023-5-376-377 29. Sosenushkin E. N., Rogulin S. A., Sosenushkin A. E. et al. Working shaft of forging rolls. Patent RF, No. 2827189. Applied: 28.12.2023. Published: 23.09.2024. Bulletin No. 27. 30. Rogulin S. A., Sosenushkin E. N., Yanovskaya E. A., Sosenushkin A. E. Working shaft of forging rolls. Patent RF, No. 2827191. Applied: 28.12.2023. Published: 23.09.2024. Bulletin No. 27. 31. Sosenushkin E. N., Rogulin S. A., Sosenushkin A. E. et al. Working shaft of forging rolls. Patent RF, No. 2828455. Applied: 29.01.2024. Published: 14.10.2024. Bulletin No. 29. 32. Karamyshev A. P., Nekrasov I. I., Pugin A. I. et al. Practical guide to the Deform-3D software package. Yekaterinburg: UrFU, 2010. 266 p. 33. Zienkiewicz O. C. The finite element method in engineering science. Translated from English. Moscow: Mir. 1975. 541 p. 34. Segerlind L. Application of the finite element method. Moscow: Mir, 1979. 392 p. 35. Norrie D. H, de Vries G. An introduction to the finite element analysis. Translated from English. Moscow: Mir, 1981. 304 p. 36. Gallagher R. Finite element analysis. Fundamentals. Translated from English. Moscow: Mir, 1984. 428 p. 37. Sedov L. I. Continuum mechanics. Vol. 1. Saint Petersburg: Lan, 2004. 528 p. 38. Matveev M. A. Evaluation of the probability of metal destruction during hot plastic deformation using Cockcroft-Latham criterion. Nauchno-tekhnicheskie vedomosti SPbPU. Estestvennye i inzhenernye nauki. 2017. Vol. 23. No. 2. Pp. 109-126. DOI: 10.18721/JEST.230211 |