Journals →  CIS Iron and Steel Review →  2025 →  #1 →  Back

Ecology and Recycling
ArticleName An anode composition influence on the efficiency of producing sodium ferrate for metallurgical plants wastewater treatment
DOI 10.17580/cisisr.2025.01.19
ArticleAuthor A. P. Petkova, A. I. Konyashina, G. R. Sharafutdinova, O. Yu. Ganzulenko
ArticleAuthorData

Empress Catherine II Saint Petersburg Mining University (St. Petersburg, Russia)

A. P. Petkova, Dr. Eng., Prof., e-mail: apetkova@inbox.ru
G. R. Sharafutdinova, Postgraduate Student, e-mail: grsharafutdinova@yandex.ru
O. Yu. Ganzulenko, Cand. Eng., Associate Prof., e-mail: oxana_ganza@mail.ru

“Dobrokhim” LLC (Saint-Petersburg, Russia)

A. I. Konyashina, General Director, e-mail: akoniashina@ya.ru

Abstract

The article investigates the electrochemical synthesis of sodium ferrate using anodes made of ferritic steel alloyed with silicon concentrations of 4.15 %, 5.5 %, 6.8 % and 7.5 %. It has been found that silicon content increase in the anodes contributes to a significant improvement in the basic parameters of the process. With silicon content of 7.5 %, the maximum concentration of sodium ferrate in solution was reached – up to 18 g/dm3, which is 3 times higher than with transformer steel anodes, while increasing productivity and reducing specific energy consumption for synthesis. The increased silicon content facilitates the destruction of the oxide film on the surface of the anode in alkaline solution, which slows down electrochemical processes, which makes it possible to stabilize the reactor’s efficiency for a long time. Sodium ferrate demonstrates high efficiency in removing heavy metals, organic compounds, and fine particles from wastewater generated by mining and metallurgical plants. These data confirm the possibility of using sodium ferrate for the purification of the process waters used in the processing of non-ferrous ores and rare earth metals, as well as to prevent negative effects on the environment.

keywords Wastewater from metallurgical enterprises, sodium ferrate, electrochemical process, reactor, sacrificial anode, electrolyte
References

1. Meng S., Wen S., Han G., Wang X., Feng Q. Wastewater treatment in mineral processing of non-ferrous metal resources: a review. Water. 2022. Vol. 14. No. 5. p. 726. DOI: 10.3390/w14050726
2. Mao G., Han Y., Liu X., Crittenden J., Huang N., Ahmad U. M. Technology status and trends of industrial wastewater treatment: a patent analysis. Chemosphere. 2022. Vol. 288. p. 132483. DOI: 10.1016/j.chemosphere.2021.132483
3. Piirainen V. Yu., Mikhailov A. V., Barinkov V. M., Starovoitov V. N. The use of sludge-peat composition for the processing of alumina production waste. Obogashchenie rud. 2022. No. 6. pp. 51–58.
4. Dutta D., Arya S., Kumar S. Industrial wastewater treatment: Current trends, bottlenecks, and best practices. Chemosphere. 2021. Vol. 285. pp. 131245. DOI: 10.1016/j.chemosphere.2021.131245
5. Gendler S. G., Stepantsova A. Y., Popov M. M. Justification on the safe exploitation of closed coal warehouse by gas factor. Journal of Mining Institute. 2024. Vol. 271. pp. 1–11.
6. Karapetyan K. G., Dorosh I. V., Zgonnik P. V., Korshunov A. D., Perina A. I. Sorbents based on foamed phosphate glass for collecting petroleum oil products from contaminated soils and water surfaces. Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering. 2024, Vol. 335. No. 8. pp. 227–240. DOI: 10.18799/24131830/2024/8/4484
7. Alibabaei F., Saebnoori E., Fulazzaky M. A., Talaeikhozani A., Roohi P., Moghadas, F., Alian T. An evaluation of the efficiency of odorant removal by sodium ferrate (VI) oxidation. Measurement. 2021. Vol. 179. p. 109488. DOI: 10.1016/j.measurement.2021.109488

8. Kareem B. Y., Al Tameemi H. M. The performance of potassium ferrate for COD removal in AL-SAMAWAH refinery wastewataer. AIP Conference Proceedings. Najaf, Iraq 22–23 March 2021. 2022. Vol. 2386. No. 1. p. 080023. DOI: 10.1063/5.0066964
9. Altynbayeva G., Kadnikova O., Aydarhanov A., Toretayev M. Industrial wastewaters of the feed industry: use of sodium ferrate in the phenol purification process. Rigas Tehniskas Universitates Zinatniskie Raksti. 2021. Vol. 25. No. 1. pp. 829–839. DOI: 10.2478/rtuect-2021-0062
10. Sailo L., Pachuau L., Yang J. K., Lee S. M., Tiwari D. Efficient use of ferrate (VI) for the remediation of wastewater contaminated with metal complexes. Environmental Engineering Research. 2015. Vol. 20. No. 1. pp. 89–97. DOI: 10.4491/eer.2014.079
11. Gunawan G., Haris A., Prasetya N. B. A., Pratista E., Amrullah A. Ferrate (VI) synthesis using Fe(OH)3 from waste iron electrolysis and its application for the removal of metal ions and anions in water. Indonesian Journal of Chemistry. 2021. Vol. 21. No. 6. pp. 1397–1407. DOI: 10.22146/ijc.64824
12. Dong S., Mu Y., Sun X. Removal of toxic metals using ferrate (VI): a review. Water Science and Technology. 2019. Vol. 80. No. 7. pp. 1213–1225. DOI: 10.2166/wst.2019.376
13. Andreev S. Yu., Garkina I. A., Knyazev A. A., Dolgushev M. S. Study of the technological process of electrochemical synthesis of sodium ferrate in anode cells of a membrane electrolyzer. Regional architecture and construction. 2020. No. 2. pp. 142–149.
14. Petkova A. P., Gorbatyuk S. M., Sharafutdinova G. R., Nagovitsyn V. A. Selection of materials and technologies for the electrochemical synthesis of sodium ferrate. Metallurgist. 2024. Vol. 68. No. 3. pp. 449–459. DOI: 10.1007/s11015-024-01747-w
15. Goodwill J. E., LaBar J., Slovikosky D., Strosnider W. H. Preliminary assessment of ferrate treatment of metals in acid mine drainage. Journal of environmental quality. 2019. Vol. 48. No. 5. pp. 1549–1556. DOI: 10.2134/jeq2019.02.0079
16. Munyengabe A., Zvinowanda C., Ramontja J., & Zvimba J. N. Effective desalination of acid mine drainage using an advanced oxidation process: Sodium ferrate (VI) salt. Water. 2021. Vol. 13. No. 19. pp. 2619. DOI: 10.3390/w13192619
17. Sarantseva A. A., Ivantsova N. A., Kuzin E. N. Investigation of the Process of Oxidative Degradation of Phenol by Sodium Ferrate Solutions. Russian Journal of General Chemistry. 2023. Vol. 93. No. 13. pp. 3454-3459. DOI: DOI: 10.1134/s1070363223130273
18. Sarantseva A. A., Astakhov P. S., Kuzin E. N. Study of the disinfectant capacity of sodium ferrate. Occupational safety in industry. 2024. No. 7. pp. 47-53. DOI: 10.24000/0409-2961-2024-7-47-53
19. Thomas M., Kozik V., Barbusunski K., Sochanik A., Jampilek J., Bak A. Potassium ferrate (Vi) as the multifunctional agent in the treatment of landfill leachate. Materials. 2020. Vol. 13. No. 21. pp. 5017. DOI: 10.3390/ma13215017.
20. Orekhova A. I., Khalemskiy A. M., Sherstobitova T. M., Kogan B. S. Purification of industrial waters of the Urals using a new oxidizing reagent. Non-ferrous Metallurgy. 2013. No. 4. pp. 64–67.
21. Vologzhanina S. A., Ermakov B. S., Ermakov S. B., Khuznakhmetov R. M. Relationship between operating conditions and the emergence of nano- and ultradispersed grain boundary defects in weld joints. Tsvetnye Metally. 2023. No. 8. pp. 80–85.
22. Sun X., Zhang Q., Liang H., Ying L., Xiangxu M., Sharma V. K. Ferrate (VI) as a greener oxidant: Electrochemical generation and treatment of phenol. Journal of hazardous materials. 2016. Vol. 319. pp. 130-136. DOI: 10.1016/j.jhazmat.2015.12.020
23. Wang H., Liu Y., Zeng F., Song S. Electrochemical synthesis of ferrate (VI) by regular anodic replacement. International Journal of Electrochemical Science. 2015. Vol. 10. No. 10. pp. 7966–7976. DOI: 10.1016/S1452-3981(23)11069-8
24. Diaz M., Doederer K., Keller J., Cataldo M., Donose B. C., Ali Y., Ledezma P. Towards in situ electro-generation of ferrate for drinking water treatment: A comparison of three low-cost sacrificial iron electrodes. Journal of Electroanalytical Chemistry. 2021. Vol. 880. p. 114897. DOI: 10.1016/j.jelechem.2020.114897
25. Barvwyv S., Ulu F., Särkkä H., Dimoglo A., & Sillanpää M. Electrosynthesis of ferrate (VI) ion using high purity iron electrodes: of influencing parameters on the process and investigating its stability. International Journal of Electrochemical Science. 2014. Vol. 9. No. 6. pp. 3099–3117. DOI: 10.1016/S1452-3981(23)07995-6

26. Deng Y., Guan X. Unlocking the potential of ferrate (VI) in water treatment: Toward one-step multifunctional solutions. Journal of Hazardous Materials. 2024. Vol. 464. p. 132920. DOI: 10.1016/j.jhazmat.2023.132920
27. Litvinenko V. S., Dvoynikov M. V., Trushko V. L. Elaboration of a conceptual solution for the development of the Arctic shelf from seasonally flooded coastal areas. International Journal of Mining Science and Technology. 2022. Vol. 32. No. 1. pp. 113–119. DOI: 10.1016/j.ijmst.2021.09.010
28. Bazhin V. Y., Ustinova Y. V., Fedorov S. N., Shalabi M. E. K. Improvement of energy efficiency of ore-thermal furnaces in smelting of alumosilicic raw materials. Journal of Mining Institute. 2023. Vol. 261. pp. 384–391. 
29. Mikhailov A. V., Shibanov D. A., Bessonov A. E., Bouguebrine C. Сomprehensive Assessment Production Efficiency of Electric Rope Shovel through Operator Qualification Criteria. Transactions A: Basics. 2024. Vol. 37. No. 07. pp. 1231. DOI: 10.5829/IJE.2024.37.07A.03
30. Petkova A. P., Sharafutdinova G. R. Justification of materials and technological parameters of sodium ferrate electrolysis process. Design. Materials. Technology. 2024. No. 2 (74). pp. 170–176. DOI: 10.46418/1990-8997_2024_2(74)_170_176
31. Petkova A. P., Konyashina A. I., Sharafutdinova G. R. Development of the layout and manufacturing technology of a flow reactor for the electrochemical synthesis of sodium ferrate. Design. Materials. Technology. 2024. No. 3 (75). pp. 207–213. DOI: 10.46418/1990-8997_2024_3(75)_207_213
32. Shulga E., Karamov R., S. Sergeichev I., D. Konev S., I. Shurygina L., S. Akhatov,I., G. Nasibulin A. Fused filament fabricated polypropylene composite reinforced by aligned glass fibers. Materials. 2020. Vol. 13. No. 16. pp. 3442. DOI: 10.3390/ma13163442
33. Pryakhin E. I., Pribytkova D. A. The influence of the quality of surface preparation of pipes for heating networks on their corrosion resistance during operation in underground conditions. Chernye Metally. 2023. No. 11. pp. 97–102.
34. Korogodin A. S., Ivanov S. L. Assessment of the technical condition of drum mill supporting sliding bearings during operation as part of an arctic mining equipment complex. Russian Mining Industry. 2024. No. 6. pp. 144–151. DOI: 10.30686/1609-9192-2024-6-144-151
35. Pryakhin E. I., Azarov V. A. Comparative analysis of the use of epoxy and fluoroplastic polymer compositions as internal smooth coatings of the inner cavity of steel main gas pipelines. CIS Iron and Steel Review. 2024. Vol. 28. pp. 93–98.
36. Feihu Z., Yi S. S. Electrochemical Synthesis of Ferrate (VI): Factors Influencing Synthesis and Current Research Trends. Journal of Advanced Research in Applied Mechanics. 2024. Vol. 117. No. 1. pp. 72–90. DOI: 10.37934/aram.117.1.7290
37. Sun X., Zu K., Liang H., Sun L., Zhang L., Wang C., Sharma V. K. Electrochemical synthesis of ferrate (VI) using sponge iron anode and oxidative transformations of antibiotic and pesticide. Journal of hazardous materials. 2018. Vol. 344. pp. 1155–1164. DOI: 10.1016/j.jhazmat.2017.08.081
38. Talaiekhozani A., Talaei M. R., Rezania S. An overview on production and application of ferrate (VI) for chemical oxidation, coagulation and disinfection of water and wastewater. Journal of environmental chemical engineering. 2017. Vol. 5. No. 2. pp. 1828–1842. DOI: 10.1016/j.jece.2017.03.025
39. Belov B. F., Trotsan A. I., Brodetsky I. L., Kharlashin P. P., & Parenchuk I. V. Classification and optimization of ferrosilicon alloys. New materials and technologies in metallurgy and machinery. 2009. No. 2. pp. 129–133.

40. Cekerevac M. I. Investigation of electrochemical synthesis of ferrate, Part I: Electrochemical behavior of iron and its several alloys in concentrated alkaline solutions. Hemijska industrija. 2009. Vol. 63. No. 5. p. 387.

Full content An anode composition influence on the efficiency of producing sodium ferrate for metallurgical plants wastewater treatment
Back