Journals →  CIS Iron and Steel Review →  2025 →  #1 →  Back

Coating Application and Corrosion Protection
ArticleName Fe–Cr–Ni–Co–Cux coatings for marine and coastal infrastructure protection from corrosion, tribocorrosion and biofouling
DOI 10.17580/cisisr.2025.01.16
ArticleAuthor M. N. Fatykhova, A. N. Sheveyko, A. R. Gizatullina, K. A. Kuptsov
ArticleAuthorData

National University of Science and Technology “MISIS” (Moscow, Russia)

M. N. Fatykhova, Junior Researcher, e-mail: mariya.antonyuck@ya.ru
A. N. Sheveyko, Researcher, e-mail: sheveyko@mail.ru
A. R. Gizatullina, Research Assistant, e-mail: alfina.gizatullina@yandex.ru
K. A. Kuptsov, Senior Researcher, e-mail: kuptsov.k@gmail.com

Abstract

The aim of this study is to investigate the effect of varying copper (Cu) content on the structure, corrosion, tribocorrosion, and bactericidal properties of FeCrNiCo–Cux coatings. Specifically, the main idea is to maximize the Cu content without secondary phases formation using Electrospark Deposition (ESD) method characterized by rapid cooling rates of the melt, while maintaining the corrosion properties of the Cu-free coating, and simultaneously enhancing its antimicrobial and tribocorrosion properties. To achieve this, thick high-entropy Fe–Cr–Ni–Co–(Cu) coatings with different Cu content (up to 24 at. %) were obtained in a protective argon atmosphere. All coatings exhibited a single-phase structure based on a solid solution with an fcc lattice, dense and homogeneous microstructure with high continuity. In tribocorrosion conditions, the FeCrNiCo coating demonstrated the lowest corrosion current, while the FeCrNiCo–12Cu coating revealed the most positive corrosion potential. However, after a certain Cu content threshold, tribocorrosion behavior deteriorated significantly. In terms of wear, coatings with high Cu content exhibited the highest wear resistance, which did not correlate with the hardness of the coatings. All coatings demonstrated a moderate antibacterial effect against B. cereus Arc30, with the FeCrNiCo–12Cu coating showing the highest ability to suppress bacterial growth and further biofilm formation.

The work was financially supported by the Russian Science Foundation (Agreement No. 20-79-10104-П).

keywords Coatings, HEA, HECs, tribocorrosion, corrosion, antibacterial, seawater
References

1. Tomosawa F., Tsujikawa S., Ono T., Yonemaru K., Takizawa S., Kugai Y., Minemura N. Research on Applicability of New Materials to Marine Structures in Tropical Climates: Durability Assessment of New Materials, in: OMAE2006, Volume 3: Safety and Reliability; Materials Technology; Douglas Faulkner Symposium on Reliability and Ultimate Strength of Marine Structures, 2006: pp. 451–460. DOI: 10.1115/OMAE2006-92110
2. Abo Nassar N. E. Corrosion in marine and offshore steel structures: Classification and overview. Int. J. Adv. Eng. Sci. Appl. 2022. No. 3. pp. 7–11. DOI: 10.47346/ijaesa.v3i1.80
3. Abbas M., Shafiee M. An overview of maintenance management strategies for corroded steel structures in extreme marine environments. Mar. Struct. 2020. Vol. 71. 102718. DOI: 10.1016/j.marstruc.2020.102718
4. Alcántara J., de la Fuente D., Chico B., Simancas J., Díaz I., Morcillo M, Marine Atmospheric Corrosion of Carbon Steel: A Review. Materials. 2017. No. 10. p. 406. DOI: 10.3390/ma10040406
5. Valdez B., Ramirez J., Eliezer A., Schorr M., Ramos R., Salinas R. Corrosion assessment of infrastructure assets in coastal seas. J. Mar. Eng. Technol. 2016. Vol. 15. pp. 124–134. DOI: 10.1080/20464177.2016.1247635
6. Wiener M. S., Salas B. V. Corrosion of the marine infrastructure in polluted seaports. Corros. Eng. Sci. Technol. 2005. Vol. 40. pp. 137–142. DOI: 10.1179/174327805X46931
7. Xu J., Lu H., Cai L., Liao Y., Lian J. Surface Protection Technology for Metallic Materials in Marine Environments. Materials. 2023. Vol. 16. 6822. DOI: 10.3390/ma16206822
8. Urbahs A., Savkovs K., Rijkuris G., Andrejeva D. Corrosion and Wear Analysis in Marine Transport Constructions. Transp. Aerosp. Eng. 2018. No. 6. pp. 5–14. DOI: 10.1515/tae-2018-0001

9. Makhlouf A. S. H., Botello M. A. - Failure of the metallic structures due to microbiologically induced corrosion and the techniques for protection, Chapter 1. In: Makhlouf A. S. H., Aliofkhazraei M. (Eds.), Handb. Mater. Fail. Anal., Butterworth-Heinemann, 2018. pp. 1–18. DOI: 10.1016/B978-0-08-101928-3.00001-X
10. Vuong P., McKinley A., Kaur P. Understanding biofouling and contaminant accretion on submerged marine structures. Npj Mater. Degrad. 2023. No. 7. pp. 1–11. DOI: 10.1038/s41529-023-00370-5
11. Rajala P., Cheng D.-Q., Rice S. A. Lauro F. M. Sulfate-dependant microbially induced corrosion of mild steel in the deep sea: a 10-year microbiome study. Microbiome. 2022. No. 10. p. 4. DOI: 10.1186/s40168-021-01196-6
12. Ali A., Jamil M. I., Jiang J., Shoaib M., Amin B. U., Luo S., Zhan X., Chen F., Zhang Q. An overview of controlled-biocide-release coating based on polymer resin for marine antifouling applications. J. Polym. Res. 2020. Vol. 27. p. 85. DOI: 10.1007/s10965-020-02054-z
13. Dohare S. Corrosion Protection and Modern Infrastructure, in: A. Singh (Ed.), Introd. Corros., IntechOpen, Rijeka, 2023. DOI: 10.5772/intechopen.111547
14. Larché N., Dézerville P. Review of material selection and corrosion in seawater reverse osmosis desalination plants. Desalination Water Treat. 2011. Vol. 31. pp. 121–133. DOI: 10.5004/dwt.2011.2362
15. Amendola R., Acharjee A. Microbiologically Influenced Corrosion of Copper and Its Alloys in Anaerobic Aqueous Environments: A Review. Front. Microbiol. 2022. Vol. 13. DOI: 10.3389/fmicb.2022.806688
16. Refait P., Grolleau A.-M., Jeannin M., Sabot R. Cathodic Protection of Complex Carbon Steel Structures in Seawater. Corros. Mater. Degrad. 2022. No. 3. pp. 439–453. DOI: 10.3390/cmd3030026
17. Sun Y. Surface Engineering & Coating Technologies for Corrosion and Tribocorrosion Resistance. Materials. 2023. Vol. 16. p. 4863. DOI: 10.3390/ma16134863
18. Wood R. J. K., Lu P. Coatings and Surface Modification of Alloys for Tribo-Corrosion Applications. Coatings. 2024. Vol. 14. p. 99. DOI: 10.3390/coatings14010099
19. Munger C. G., Vincent L., Shifler D. A. Marine Coatings, in: LaQues Handb. Mar. Corros., John Wiley & Sons, Ltd. 2022. pp. 527–571. DOI: 10.1002/9781119788867.ch19
20. Xavier J. R. Investigation on the effect of nano-ceria on the epoxy coatings for corrosion protection of mild steel in natural seawater. Anti-Corros. Methods Mater. 2018. Vol. 65. pp. 38–45. DOI: 10.1108/ACMM-04-2017-1784
21. López-Ortega A., Bayón R., Arana J. L. Evaluation of protective coatings for offshore applications. Corrosion and tribocorrosion behavior in synthetic seawater. Surf. Coat. Technol. 2018. Vol. 349. pp. 1083–1097. DOI: 10.1016/j.surfcoat.2018.06.089
22. Deng W., An Y., Zhao X., Zhang C., Tang L., Liu J. Cavitation erosion behavior of ceramic/organic coatings exposed to artificial seawater. Surf. Coat. Technol. 2020. Vol. 399. 126133. DOI: 10.1016/j.surfcoat.2020.126133
23. Kumar A. M., Rajesh T., Obot I. B., Bin Sharfan I. I., Abdulhamid M. A. Water-soluble chitosan salt as ecofriendly corrosion inhibitor for N80 pipeline steel in artificial sea water: Experimental and theoretical approach. Int. J. Biol. Macromol. 2024. Vol. 254. 127697. DOI: 10.1016/j.ijbiomac.2023.127697
24. Rui D., Li X., Jia W., Li W., Xiao W., Gui T. Releasing kinetics of dissolved copper and antifouling mechanism of cold sprayed copper composite coatings for submarine screen doors of ships. J. Alloys Compd. 2018. Vol. 763. pp. 525–537. DOI: 10.1016/j.jallcom.2018.05.355
25. Vincent M., Hartemann P., Engels-Deutsch M. Antimicrobial applications of copper. Int. J. Hyg. Environ. Health. 2016. Vol. 219. pp. 585–591. DOI: 10.1016/j.ijheh.2016.06.003
26. Rao P., Mulky L. Microbially Influenced Corrosion and its Control Measures: A Critical Review. J. Bio- Tribo-Corros. 2023. No. 9. p. 57. DOI: 10.1007/s40735-023-00772-7
27. Tian J.-J., Wang K., Xu K.-W., Luo X.-T., Shao G.-S., Li C.-J. Effect of coating composition on the micro-galvanic dissolution behavior and antifouling performance of plasma-sprayed laminated-structured CuTi composite coating. Surf. Coat. Technol. 2021. Vol. 410. 126963. DOI: 10.1016/j.surfcoat.2021.126963
28. Wang Z., Zhou Z., Xu W., Yang D., Xu Y., Yang L., Ren J., Li Y., Huang Y. Research status and development trends in the field of marine environment corrosion: a new perspective. Environ. Sci. Pollut. Res. 2021. Vol. 28. pp. 54403–54428. DOI: 10.1007/s11356-021-15974-0
29. Javed M., Neil W., Adam G., Wade S. Microbiologically influenced corrosion of copper and its alloys–a review. Corros. Prev. 2016. Vol. 84. pp. 1–14.
30. Zeng Y., Yan W., Shi X., Yan M., Shan Y., Yang K. Enhanced Bio-corrosion Resistance by Cu Alloying in a Micro-alloyed Pipeline Steel. Acta Metall. Sin. Engl. Lett. 2022. Vol. 35. pp. 1731–1743. DOI: 10.1007/s40195-022-01392-9
31. Jiajia Wu, Tan F., Zhang D., Yin J., Li E. Corrosion of Copper-bearing High Strength Mooring Chain Steel Affected by Microbes in Seawater. Prot. Met. Phys. Chem. Surf. 2019. Vol. 55. pp. 1207–1216. DOI: 10.1134/S2070205119060327
32. Liu Z., Cui T., Chen Y., Dong Z. Effect of Cu addition to AISI 8630 steel on the resistance to microbial corrosion. Bioelectrochemistry. 2023. Vol. 152. 108412. DOI: 10.1016/j.bioelechem.2023.108412
33. Li Y., Ning C. Latest research progress of marine microbiological corrosion and bio-fouling, and new approaches of marine anti-corrosion and anti-fouling. Bioact. Mater. 2019. No. 4. pp. 189–195. DOI: 10.1016/j.bioactmat.2019.04.003
34. Otto F., Dlouhý A., Somsen Ch., Bei H., Eggeler G., George E. P. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. 2013. Vol. 61. pp. 5743–5755. DOI: 10.1016/j.actamat.2013.06.018
35. Guan Y., Cui X., Chen D., Su W., Zhao Y., Li J., Jin G. Realizing high strength and toughness of gradient high-entropy alloy coating by in-situ interface reaction of FeCoCrNi/FeCoCrAl. Surf. Coat. Technol. 2023. Vol. 464. 129569. DOI: 10.1016/j.surfcoat.2023.129569
36. Nong Z.-S., Lei Y.-N., Zhu J.-C. Wear and oxidation resistances of AlCrFeNiTi-based high entropy alloys. Intermetallics. 2018. Vol. 101. pp. 144–151. DOI: 10.1016/j.intermet.2018.07.017
37. Cheng H., Pan Z., Fu Y., Wang X., Wei Y., Luo H., Li X. Review-Corrosion-Resistant High-Entropy Alloy Coatings: A Review. J. Electrochem. Soc. 2021. Vol. 168. 111502. DOI: 10.1149/1945-7111/ac34d0
38. Cui Y., Shen J., Manladan S. M., Geng K., Hu S. Wear resistance of FeCoCrNiMnAlx high-entropy alloy coatings at high temperature. Appl. Surf. Sci. 2020. 512. 145736. DOI: 10.1016/j.apsusc.2020.145736
39. Duan J., Wang M., Huang R., Miao J., Lu Y., Wang T., Li T. A novel high-entropy alloy with an exceptional combination of soft magnetic properties and corrosion resistance. Sci. China Mater. 2023. Vol. 66. pp. 772–779. DOI: 10.1007/s40843-022-2171-5
40. Yang W., Liu Y., Pang S., Liaw P. K., Zhang T. Bio-corrosion behavior and in vitro biocompatibility of equimolar TiZrHfNbTa high-entropy alloy. Intermetallics. 2020. Vol. 124. 106845. DOI: 10.1016/j.intermet.2020.106845
41. Patel P., Roy A., Sharifi N., Stoyanov P., Chromik R. R., Moreau C. Tribological Performance of High-Entropy Coatings (HECs): A Review. Materials. 2022. Vol. 15. 3699. DOI: 10.3390/ma15103699
42. Shi Y., Yang B., Liaw P. Corrosion-Resistant High-Entropy Alloys: A Review. Metals. 2017. No. 7. p. 43. DOI: 10.3390/met7020043
43. Lee C. P., Chang C. C., Chen Y. Y., Yeh J. W., Shih H. C. Effect of the aluminium content of AlxCrFe1.5MnNi0.5 high-entropy alloys on the corrosion behaviour in aqueous environments. Corros. Sci. 2008. Vol. 50. pp. 2053–2060. DOI: 10.1016/j.corsci.2008.04.011
44. Hsu Y.-J., Chiang W.-C., Wu J.-K. Corrosion behavior of FeCoNi-CrCux high-entropy alloys in 3.5 % sodium chloride solution. Mater. Chem. Phys. 2005. Vol. 92. pp. 112–117. DOI: 10.1016/j.matchemphys.2005.01.001
45. Aliyu A., Srivastava C. Corrosion behavior and protective film constitution of AlNiCoFeCu and AlCrNiCoFeCu high entropy alloy coatings. Surf. Interfaces. 2021. Vol. 27. 101481. DOI: 10.1016/j.surfin.2021.101481
46. Zheng Z. Y., Li X. C., Zhang C., Li J. C. Microstructure and corrosion behaviour of FeCoNiCuSnx high entropy alloys. Mater. Sci. Technol. 2015. Vol. 31. pp. 1148–1152. DOI: 10.1179/1743284714Y.0000000730
47. Kuptsov K. A., Antonyuk M. N., Sheveyko A. N., Bondarev A. V., Ignatov S. G., Slukin P. V., Dwivedi P., Fraile A., Polcar T., Shtansky D. V., High-entropy Fe-Cr-Ni-Co-(Cu) coatings produced by vacuum electro-spark deposition for marine and coastal applications. Surf. Coat. Technol. 2023. Vol. 453. 129136. DOI: 10.1016/j.surfcoat.2022.129136
48. Wang J., Wen W., Cheng J., Dai L., Li S., Zhang X., Yang Y., Li H., Hou X., Wu B., Wu J. Tribocorrosion behavior of high-entropy alloys FeCrNiCoM (M = Al, Mo) in artificial seawater. Corros. Sci. 2023. Vol. 218. 111165. DOI: 10.1016/j.corsci.2023.111165
49. Wu X., Lu Y. Study on the Corrosion Resistance of Laser Clad Al0.7FeCoCrNiCux High-Entropy Alloy Coating in Marine Environment. Coatings. 2022. No. 12. 1855. DOI: 10.3390/coatings12121855
50. Mukanov S., Loginov P., Fedotov A., Bychkova M., Antonyuk M., Levashov E. The Effect of Copper on the Microstructure, Wear and Corrosion Resistance of CoCrCuFeNi High-Entropy Alloys Manufactured by Powder Metallurgy. Materials. 2023. Vol. 16. 1178. DOI: 10.3390/ma16031178
51. Muangtong P., Rodchanarowan A., Chaysuwan D., Chanlek N., Goodall R. The corrosion behaviour of CoCrFeNi-x (x = Cu, Al, Sn) high entropy alloy systems in chloride solution. Corros. Sci. 2020. Vol. 172. 108740. DOI: 10.1016/j.corsci.2020.108740

Full content Fe–Cr–Ni–Co–Cux coatings for marine and coastal infrastructure protection from corrosion, tribocorrosion and biofouling
Back