Journals →  CIS Iron and Steel Review →  2025 →  #1 →  Back

Ferroalloys
ArticleName Study of the structure and phase composition of a quasi-high-entropy alloy of the Cr–Mn–Ni–Fe–Co–Nb system
DOI 10.17580/cisisr.2025.01.08
ArticleAuthor V. Yu. Kulikov, Sv. S. Kvon, A. Z. Isagulov, S. K. Arinova
ArticleAuthorData

Karaganda Technical University (Karaganda, Kazakhstan)

V. Yu. Kulikov, Cand. Eng., Prof., e-mail: mlpikm@mail.ru
Sv. S. Kvon, Cand. Eng., Prof., e-mail: svetlana.1311@mail.ru
A. Z. Isagulov, Dr. Eng., Prof., e-mail: isagulov_aristotel@kstu.kz
S. K. Arinova, Ph. D., Lecturer, e-mail: sanya_kazah@mail.ru

Abstract

The paper presents the results of studying the structure and properties of quasi-high-entropy alloys (QHEAs) of the Cr–Mn–Ni–Fe–Co–Nb system, with the Nb content 0–18 %. These alloys were smelted with partial use of ferroalloys in the charge, which is their feature and determines formation of new phases. For the experimental alloys obtained under the specified smelting conditions and charge composition, the Laves phase and the σ phase were not detected. The structure of the studied alloys is represented by the FCC solid solution that includes all the metals, and the niobium content varies widely. In addition, the structure is represented by interstitial phases: niobium carbide NbC0.76–1.0, manganese carbide Mn7C3 and intermetallic CrNi with the cubic lattice. Introduction of niobium in the Cr–Mn–Ni–Fe–Co–Nb system in the amount of 14–16 % leads to increase of hardness, compression strength and wear resistance. The niobium content above 18 % leads to a slight decrease of these parameters, which can be explained by its uneven distribution in the structure. The study shows that the partial use of ferroalloys in the charge makes it possible to obtain alloys of the Cr–Mn–Ni–Fe–Co–Nb system of the QHEA type that have a higher commercial attractiveness due to simplification of the smelting technology and the cost of the charge.

The research was carried out within the framework of implementation of the Program BR21882240 “Developing a quasi high-entropy alloy using Kazakhstani raw materials and technology of producing precision parts based on it” (agreement with the Committee of Science of the Ministry of Education and Science of the Republic of Kazakhstan No. 378-PTsF-23-25 dated November 15, 2023), funded by the Ministry of Science and Higher Education of the Republic of Kazakhstan.

keywords Quasi-high-entropy alloys, Cr–Mn–Ni–Fe–Co–Nb system, ferroalloys, structure, hardness, wear resistance, carbides, intermetallic compounds
References

1. Cantor B., Chang I. T. H., Knight P., Vincent A. J. B. Microstructural development in equiatomic multicomponent alloys. Materials Science and Engineering: A. 2004. Vol. 375–377. pp. 213–218.
2. Yeh J.-W. Recent Progress in High Entropy Alloys. Ann. Chim. Sci. Mat. 2006. Vol. 31. pp. 633-648.
3. Yeh J.-W., Chen S.-K., Lin S.-J., Gan J.-Y., Chin Ts.-Sh., Shun T.-Ts., Tsau Ch.-H., Chang Sh.-Y. Nanostructured High-Entropy Alloys with Multiple Principle Elements: Novel Alloy Design Concepts and Outcomes. Advanced Engineering Materials. 2004. Vol. 6. No. 8. pp. 299–303.
4. Ranganathan S. Alloyed pleasures: Multimetallic cocktails. Curr. Sci. 2003. Vol. 85. pp. 1404-1406.
5. Yeh J.-W., Chen Y.-L., Lin S.-J., Chen S.-K. High-entropy alloys – a new era of exploitation. Mater. Sci. Forum. 2007. 560. pp. 1–10.
6. Takeuchi A., Amiya K., Wada T., Yubuta K., Zhang W. High-entropy alloys with a hexagonal close-packed structure designed by equiatomic alloy strategy and binary phase diagrams. JOM. 2014. Vol. 66. pp. 1984–1992.

7. Zhang Y., Zuo T. T., Tang Z., Gao M. C., Dahmen K. A., Liaw P. K., Lu Z. P. Microstructures and properties of high-entropy alloys. Prog. Mat. Sci. 2014. Vol. 61. pp. 1–93.
8. Gali A., George E. P. Tensile properties of high and medium-entropy alloys. Intermetallics. 2013. Vol. 39. pp. 74–78. DOI: 10.1016/j.intermet.2013.03.018.7
9. Ming-Hung Tsai, Jien-Wei Yeh. High-Entropy Alloys: A Critical Review. Materials Research Letters. 2014. Vol. 2. Iss. 3. рp. 107–123.
10. Ma X., Chen J., Wang X., Hu Y., Hue Y. Microstructure and mechanical properties of cold drawing Co–Cr–Fe–Mn–Ni high entropy alloy. Journal of Alloys and Compounds. 2019. Vol. 795. pp. 45–53. DOI: 10.1016/j.jallcom.2019.04.296
11. Lin C.-M., Tsai H.-L. Effect of annealing treatment on microstructure and properties of high-entropy Fe–Co–Ni–Cr–Cu0.5 alloy. Mater. Chem. Phys. 2011. 128. pp. 50–56.
12. Bataeva Z. B., Ruktuev A. A., Ivanov I. V., Yurgin A. B., Bataev I. A. Review of studying alloys developed based on the entropy approach. Metal processing (technology, equipment, tools). 2021. Vol. 23. No. 2. pp. 116–146. DOI: 10.17212/1994-6309-2021-23.2-116-146
13. Tung C. C., Yeh J. W., Shun T. T., Chen S.-K., Huang Y.-S., Chen H.-C. On the elemental effect of Al–Co–Cr–Cu–Fe–Ni high-entropy alloy system. Materials Letters. 2007. Vol. 61 (1). pp. 1–5. DOI: 10.1016/j.matlet.2006.03.140
14. Tong C.-J., Chen M.-R., Chen S.-K., Yeh J.-W., Shun T.-T., Lin S.-J., Chang S.-Y. Mechanical performance of the Alx–Co–Cr–Cu–Fe–Ni high-entropy alloy system with multiprincipal elements. Metall. Mater. Trans. A. 2005. 36A. pp. 1263–1271.
15. Salishchev G. A., Tikhonovsky M. A., Shaysultanov D. G., Stepanov N. D., Kuznetsov A. V., Kolodiy I. V., Tortika A. S., Senkov O. N. Effect of Mn and V on structure and mechanical properties of high-entropy alloys based on Co–Cr–Fe–Ni system. J. Alloy. Compd. 2014. 591. pp. 11–21.
16. Yuhua Chen, Wenkuo Liu, Hongwei Wang et al. Effect of Ti Content on the Microstructure and Properties of Co–Cr–Fe–Ni–Mn–Ti High Entropy Alloy. Entropy. 2022. No. 2 (24). p. 241.
17. Ivchenko V. G., Pushin V. G., Uksusnikov A. N. Features of microstructure of cast high-entropy equiatomic alloys Al–Cr–Fe–Co–Ni–Cu. Fizika metallov i metallovedenie. 2013. Vol. 114. No. 6. p. 561.
18. Zhang H., Wang H., Liu Y. Improved strength and ductility in a Co–Cr–Fe–Ni–Mo high-entropy alloy system. Journal of Alloys and Compounds. 2014, 586. 478-483.
19. Bazlov A., Strochko I., Ubyivovk E., Parkhomenko M., Magomedova D., Zanaeva E. Structure and Properties of Amorphous Quasi-High-Entropy Fe–Co–Ni–Cr–(Mo,V)–B Alloys with Various Boron Content. Metals. 2023. Vol. 13. p. 1464. DOI: 10.3390/met13081464
20. Zhihua Zeng, Mengqi Xiang, Dan Zhanga, Junjie Shi, Wei Wang, Xiaopeng Tang, Wenxiang Tang, Ye Wang, Xiaodong Ma, Zhiyuan Chen, Wenhui Ma, Kazuki Morita. Mechanical properties of Cantor alloys driven by additional elements: a review. J. of Materials Research and Technology. 2021. Vol. 15. pp.1920–1934. DOI: 10.1016/j.jmrt.2021.09.019
21. Jiang Hui, Jiang Li, Qiao Dongxu, Lu Yiping, Wang Tongmin, Cao Zhiqiang, Li Tingju. Effect of Niobium on Microstructure and Properties of the Co–Cr–Fe–Nb–Ni High Entropy Alloys. J. Mater. Sci. Technol. 2017. Vol. 33 (7). pp. 712–717.
22. Zhang Jingyu, Xiong Ke, Huang Lin, Xie Bo, Ren Daping, Tang Chen, Feng Wei. Effect of Doping with Different Nb Contents on the Properties of Co–Cr–Fe–Ni High-Entropy Alloys. Materials. 2023. DOI: 16.6407.10.3390/ma16196407
23. Prusa F., Cabibbo M., Šenková A., Kucera V., Veselka Z., Školáková A., Vojtch D., Cibulková J., apek J. High-strength ultrafine-grained Co–Cr–Fe–Ni–Nb high-entropy alloy prepared by mechanical alloying: Properties and strengthening mechanism. Journal of Alloys and Compounds. 2020. 835. 155308.
24. Zhaotong Li, Cainian Jing, Yan Feng, Zhonglin Wu, Tao Lin, Jingrui Zhao. Microstructure evolution and properties of laser cladding Nb containing eutectic high entropy alloys. International Journal of Refractory Metals and Hard Materials. 2023. 110. 105992.
25. Jixu Hu, Danyang Lin, Xingyi Li, Haolong Li, Jianguo Li, Zhengxin Tang, Xin Xi, Xiaoguo Song, Wei Fu. Interfacial strengthening mechanism of C/C/Nb0.74CoCrFeNi2/Nb brazed joints: Stress-relieving effects of the FCC phase. Materials Science and Engineering: A. 2022. 854. 143895.
26. Yang L., Li Y., Wang Z., Zhao W., Qin C. Nanoporous Quasi-High-Entropy Alloy Microspheres. Metals. 2019. Vol. 9. p. 345. DOI: 10.3390/met9030345

Full content Study of the structure and phase composition of a quasi-high-entropy alloy of the Cr–Mn–Ni–Fe–Co–Nb system
Back