Journals →  CIS Iron and Steel Review →  2025 →  #1 →  Back

Mineral Processing
ArticleName Thermochemical dephosphorization of brown iron ore concentrate at Kirovskoe deposit
DOI 10.17580/cisisr.2025.01.03
ArticleAuthor A. A. Mukhtar, A. S. Makashev, B. K. Kasymova, M. M. Atakhan
ArticleAuthorData

Zh. Abishev Chemical and Metallurgical Institute (Karaganda, Kazakhstan)

A. A. Mukhtar, Cand. Eng., Associate Prof., Head of the Laboratory “Enrichment of ores”
A. S. Makashev, Senior Researcher, Laboratory “Enrichment of ores”
B. K. Kasymova, Engineer, Laboratory “Enrichment of ores”, e-mail: bkosimova@mail.ru
M. M. Atakhan, Engineer, Laboratory “Enrichment of ores”

Abstract

This paper presents the results of research on the dephosphorization of high-phosphorus brown iron ore concentrate obtained from the ore at the Kirovskoe deposit (Republic of Kazakhstan). The initial ore of this deposit is similar in its geological, structural, and chemical composition to the ore of the Lisakovskoe deposit, where beneficiation scheme consists of the following sequential technological operations: grinding, desliming, dry magnetic separation, reducing roasting and wet magnetic separation. The obtained concentrate, despite its high iron content, is noncompliant in terms of phosphorus content and requires additional processing to reduce the phosphorus content to the level which is acceptable for the metallurgical industry. According to the scheme, which includes such operations as grinding, desliming, dry and wet magnetic separation, and reducing roasting with addition of 3 % calcinated soda and 4 % coke to the charge, a concentrate with Fe content 63.9 % and P content 0.945 %, with a product output 86 %, was obtained from ore at the Kirovskoe deposit. The high-phosphorus concentrate obtained at the Kirovskoe deposit was leached by 5 % sulfuric acid solution, with a liquid/solid ratio 3:1 during 60 min, resulting in a dephosphorized concentrate with an iron content 65.3 %, phosphorus content 0.189 % and output 88.5 %. X-ray analysis showed that introduction of calcinated soda into the charge during roasting improves reduction of goethite and promotes formation of a nepheline-like phase, enriched with sodium and having high fluidity and low melting temperature. This phase facilitates penetration of oolites into cracks and effective removal of impurities, including phosphorus, during leaching.

This research was carried out under financial support of the Science Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan (Grant IRN No. АР19675375).

keywords High-phosphorus brown iron ore, combined beneficiation methods, oolites, desliming, magnetic separation, reducing roasting, calcined soda, dephosphorization, leaching, nepheline, electron probe microanalysis, Rietveld method
References

1. Bekmukhametov A. E., Bilyalov B. D. Metallogeny of exogenous iron ores fron Torgayskiy downfold and prospects of their industrial development at Lisakovsky mining and concentrating plant. Almaty: NITs “Gylym”. 2003. 366 p.

2. Yanitskiy A. L. Oligocene oolite iron ores in Northern Turgay and their genesis. M.: Izdatelstvo AN SSSR. 1960. 220 p.
3. Slipchenko B. V. About two genetic types of oolite iron ores at Lysakovskoe deposit (Northern Kazakhstan). Geologicheskiy zhurnal. 1981. Vol. 41. No. 6. pp. 53–61.
4. Yushina T. I., Chanturia E. L., Dumov A. M., Myaskov A. V. Modern trends of technological advancement in iron ore processing. Gornyi zhurnal. 2021. No. 11. pp. 75–83.
5. Baranov V. F., Patkovsksya N. A., Tasina T. I. Current trends in magnetite iron ores processing technology. Basic trends. Obogashchenie rud. 2013. No. 3. pp. 10–17.
6. Pelevin A. E., Kornilkov S. V., Dmitriev A. N., Bagazeev V. K. Quality improvement of magnetite concentrate in separate processing of different iron ore types and varieties. Gorny informatsionno-analiticheskiy byulleten. 2021. No. 11-1. pp. 306–317. DOI: 10.25018/0236_1493_2021_111_0_306
7. Pan J., Lu S. H., Li S. W., Zhu D. Q., Guo Z. Q., Shi Y., Dong T. A. New Route to Upgrading the High-Phosphorus Oolitic Hematite Ore by Sodium Magnetization Roasting-Magnetic Separation-Acid and Alkaline Leaching Process. Minerals. 2022. Vol. 12 (5). No. 568. DOI: 10.3390/min12050568
8. Wenbo Li, Dongquan Liu, Yuexin Han, Yanjun Li, Runnan Guo. An innovative study for pretreatment of high-phosphorus oolitic hematite via high-temperature heating: phase, microstructure, and phosphorus distribution analyses. Advanced Powder Technology. 2023. Vol. 34. Ed. 5. DOI: 10.1016/j.apt.2023.103996
9. Ionkov K., Gomes O., Neumann R. Process Oriented Characterization of Oolitic Iron Concentrate during Dephosphorisation by Roasting and Leaching. In: Proceedings of the IMPC 2016: XXVIII International Mineral Processing Congress. Quebec City. QC, Canada, 11–15 September 2016. pp. 3863–3880.

10. Mukhtar A. A., Rau A. P., Makashev A. S., Momynbekov A. D. Study of the process of thermal magnetic beneficiation of brown iron ores at Lisakovskoe deposit. Promyshlennost Kazakhstana. 2016. No. 4 (97). pp. 58-61.
11. Li G.F., Han Y. X. Enrichment of phosphorus in reduced iron during coal based reduction of high phosphorus-containing oolitic hematite ore. Ironmaking & Steelmaking. 2016. No. 43. pp. 163–170. DOI: 10.1179/1743281214y.0000000262
12. Luo L. Q., Zhang H. Q. Process mineralogy and characteristic associations of iron and phosphorus-based minerals on oolitic hematite. J. Cent. South Univ. 2017. pp. 1959–1967. DOI: 10.1007/s11771-017-3604-8
13. Peng Gao, Guo-Feng Li, Yue-Xin Han, Yong-Sheng Sun. Reaction Behavior of Phosphorus in Coal-Based Reduction of an Oolitic Hematite Ore and Pre-Dephosphorization of Reduced Iron. Metals. 2018. No. 8 (11). 897. pp. 2–11. DOI: 10.3390/met8110897
14. Adedeji F. A., Sale F. R. Characterization and Reducibility of Itakpe and Agbaja (Nigerian) Iron Ores. Clay Minerals. 1984. Vol. 19 (5). pp. 843–856. DOI: 10.1180/claymin.1984.019.5.12
15. Kokal H., Singh M. Naydyonov V. Removal of phosphorus from Lisakovsky iron ore by a roast-leach process. Electrometall Environ Hydrometall. 2013. No. 2. pp. 1517–15430. DOI: 10.1002/9781118804407.ch33
16. Karelin V. G., Zainullin L. A., Epishin A. Yu., Artov D. A. Combined pyro- and hydrometallurgical technology for dephosphorization of brown ore from Lisakovskoe deposit. Chernaya metallurgiya. Byulleten nauchno-tekhnicheskoy i ekonomicheskoy informatsii. 2015. No. 2. pp. 10–15.
17. Mukhtar A. A., Makashev A. S., Atakhan M. M., Gabdullin S. T. Magnetizing roasting and magnetic separation of high-phosphorus brown iron ore from the Kirovskoe deposit. Obogashchenie rud. 2023. No. 5. pp. 8–12.
18. Young R. A. The Rietveld Method. Oxford University Press. 1995. 298 p.
19. Mukhtar A. A., Mukhymbekova M. K., Makashev A. S., Savin V. N. Thermomagnetic enrichment and dephosphorization of brown iron ore and concentrates. Steel in Translation. 2018. No. 9. pp. 553–557. DOI: 10.3103/S0967091218090103
20. Zaloga A. N., Dubinin P. S., Yakimov I. S., Bezrukova O. E., Burakov S. V., Gusev K. A., Semenkina M. E. Full profile X-ray phase analysis on the base of Rietveld method with self-configurated multipopulation genetic algorithm and data of elementary analysis. Zavodskaya laboratoriya. Diagnostika materialov. 2018. No. 84 (3). pp. 25–31. DOI: 10.26896/1028-6861-2018-84-3-25-31
21. Bish D. L., Howard S. A. Quantitative phase analysis using the Rietveld method. J. Appl. Cryst. 1988. Vol. 21. pp. 86–91. DOI: 10.1107/S0021889888000514
22. Burakov S. V., Zaloga A. N., Semenkin E. S., Yakimov I. S. Research on convergence o multipopulation binary- and real coded genetic algorithms for solution of crystal structure from X-Ray powder diffraction data. Crystal Research and Technology. 2015. Vol. 50. Iss. 9–10. pp. 724–728. DOI: 10.1002/crat.201400443
23. Xu C., Sun Ti., Kou J., Li Y., Mo X., Tang L. Mechanism of phosphorus removal in beneficiation of high phosphorus ooli tic hematite by direct reduction roasting with dephosphorization agent. Transactions of Nonferrous Metals Society of China. 2012. No. 22 (11). pp. 2806–2812. DOI: 10.1016/S1003-6326(11)61536-7

Full content Thermochemical dephosphorization of brown iron ore concentrate at Kirovskoe deposit
Back