Журналы →  Черные металлы →  2025 →  №5 →  Назад

Прокатка и другие процессы ОМД
Название Актуальные направления исследований дрессировки полос
DOI 10.17580/chm.2025.05.07
Автор А. В. Кожевников, М. М. Скрипаленко, И. А. Кожевникова, М. Н. Скрипаленко
Информация об авторе

Череповецкий государственный университет, Череповец, Россия

А. В. Кожевников, заведующий кафедрой электроэнергетики и электротехники, докт. техн. наук, доцент

И. А. Кожевникова, заведующая кафедрой металлургии, машиностроения и технологического оборудования, докт. техн. наук, доцент

 

Университет науки и технологий МИСИС, Москва, Россия
М. М. Скрипаленко, доцент, канд. техн. наук, эл. почта: mms@misis.ru
М. Н. Скрипаленко, доцент, эксперт научного проекта, канд. техн. наук. эл. почта: tfsmn@yandex.ru

Реферат

Проведен обзор исследований в области процессов дрессировки. Одна из наиболее частых задач — оценка влияния шероховатости валка на формирование шероховатости дрессируемой полосы. При этом используют различные показатели, определяемые через шероховатость полосы до и после дрессировки, шероховатость валка. Шероховатость полосы можно формировать регулировкой различных параметров, например степенью деформации, натяжением, направлением разматывания рулонов, коэффициентом напряженного состояния и др. Актуальным при дрессировке является оценка свойств материала получаемой полосы. Предложен параметр, расчет которого позволяет оценить возможность устранения площадки текучести материала полосы после дрессировки. При этом определены пределы обжатий при дрессировке, гарантирующие устранение площадки текучести. Дрессировка может также влиять на изменение коррозионной стойкости и уровня магнитных свойств. При исследовании процессов дрессировки эффективны методы математического и компьютерного моделирования с использованием вычислительных сред конечно-элементного анализа. Например, по результатам математического моделирования можно повысить точность расчетов энергосиловых параметров дрессировки, а также спрогнозировать шероховатость полосы после дрессировки. Отмечено, что конечно-элементное компьютерное моделирование процессов дрессировки позволяет получать результаты, отличающиеся от полученных экспериментально не более чем на 10 %. Конечно-элементное компьютерное моделирование дает возможность оценки изменения параметров напряженно-деформированного состояния полосы при изменении различных параметров дрессировки. При использовании конечно-элементного компьютерного моделирования возможно учесть шероховатость исходной полосы и валков, при этом профиль валка и поверхность полосы описываются тригонометрическими функциями.

Ключевые слова Дрессировка, шероховатость, пластичность, прочность, натяжение, степень деформации, математическое моделирование, компьютерное моделирование
Библиографический список

1. Tretyakov A. V., Tretyakov E. M., Migacheva G. N. Skin-pass rolling and quality of thin sheet. Moscow : Metallurgiya, 1977. 232 p.
2. Mazur V. L., Nogovitsyn A. V. Theory and technology of thin sheet rolling. Dnepropetrovsk : RIA “Dnepr-Val“, 2010. 493 p.
3. Mazur V. L. Quality of thin-sheet cold-rolled steel: ensuring a given surface roughness in production conditions. Stal. 2018. No. 1. pp. 25–30.
4. Mazur V. L. Scientific foundations of the technology for production of rolled products with a given surface roughness. Stal. 2015. No. 5. pp. 59–66.
5. Ogarkov N. N., Zvyagina E. Yu., Gorbatyuk S. M., Sheshenin E. V. Analysis and mathematical modeling of reproduction of microgeometry of textured surface of roll on galvanized coldrolled strip during its skin-pass rolling. Metallurg. 2024. No. 2. pp. 88–94.
6. Ogarkov N. N., Zvyagina E. Y., Ismagilov R. R. Theoretical analysis of formation of automobile sheet roughness during temper rolling in shot-blasted rolls. Izvestiya Ferrous Metallurgy. 2019. Vol. 62 (8). pp. 600–605. DOI: 10.17073/0368-0797-2019-8-600-605
7. Rumyantsev M. I., Akhmetkuzhina I. A. Model of strip roughness formation in the deformation zone during cold rolling. Modelirovanie i razvitie protsessov OMD. 2018. No. 24. pp. 24–32.
8. Espehan M., Gunting G. Transfer of roll roughness to the surface of thin cold rolled sheet. Chernye Metally. 1975. No. 24. pp. 8–14.
9. Çolak B., Kurgan N. An experimental investigation into roughness transfer in skin-pass rolling of steel strips. International Journal of Advanced Manufacturing Technology. 2018. Vol. 96, Iss. 12. pp. 3321–3330. DOI: 10.1007/s00170-018-1691-9
10. Kijima H. Influence of roll radius on roughness transfer in skin-pass rolling of steel strip. Journal of Materials Processing Technology. 2014. Vol. 214, Iss. 5. pp. 1111–1119. DOI: 10.1016/j.jmatprotec.2013.12.019
11. Özakın B., Kurgan N. Experimental investigation of roughness transfer with skin-pass rolling to high strength low alloy (HSLA) material. Arabian Journal for Science and Engineering. 2021. Vol. 46, Iss. 12. pp. 12137–12144. DOI: 10.1007/s13369-021-05842-x
12. Özakın B., Çolak B., Kurgan N. Effect of material thickness and reduction ratio on roughness transfer in skin-pass rolling to DC04 grade sheet materials. Industrial Lubrication and Tribology. 2021. Vol. 73, Iss. 4. pp. 676–682. DOI: 10.1108/ILT-10-2020-0377
13. Espehan M., Gunting G. Transfer of roll roughness to the surface of thin cold-rolled sheet. Moscow : Metallurgiya, 1977. 323 p.
14. Gorbunov A. V. Improving the technology of production of cold-rolled sheet steel with the required characteristics of surface microtopography for the automotive industry. Thesis of inauguration of Dissertation … of Candidate of Engineering Sciences. Magnitogorsk, 2011. 19 p.
15. Antonov P. V., Bolobanova N. L., Parfenov N. S., Timofeeva M. A. Evaluation of the formation of surface roughness of hot-rolled pickled strips during skin-pass rolling. Stal. 2023. No. 8. pp. 29–31.
16. Garber E. A., Kozhevnikova I. A. Rolling theory: textbook. St. Oskol : TNT, 2015. 312 p.
17. Akhmadiev K. R., Rumyantsev M. I., Zavalishchin A. N. Current issues of improving the technology of strip production in the conditions of MMK`s Sheet Production Shop-8. Aktualnye Problemy Sovremennoy Nauki, Tekhniki i Obrazovaniya. 2023. No. 14 (1). pp. 29–32.
18. Salganik V. M., Rumyantsev M. I., Vier I. V. Experience in constructing a mathematical model for calculating the cold rolling force. Modeling and development of metal forming processes: interuniversity collection of scientific papers. Magnitogorsk : MSTU, 2005. pp. 52–59.
19. Pivovarov A. V. Improving the quality of sheet steel surface by improving the process of forming microgeometry during cold rolling: thesis of inauguration of Dissertation ... of Candidate of Engineering Sciences. Magnitogorsk, 2005.
20. Diligensky E. V., Garber E. A., Kuznetsov V. V., Sushkov A. M. et al. Influence of microgeometry of textured rolls. Chernaya Metallurgiya. Byulleten nauchno-tekhnicheskoy i ekonomicheskoy informatsii. 2002. No. 7. pp. 41–44.
21. Zvyagina E. Yu. Improvement of equipment and technology for notching rolls of temper mills with shot to improve the quality of the sheet surface: Dissertation ... of Candidate of Engineering Sciences. Magnitogorsk, 2017. 175 p.
22. Chernov P. P., Mazur V. L., Barmin G. Yu., Bender E. A. et. al. Method of rolling strip stock. Patent SU, No. 1493340. Applied: 12.05.1987. Published: 15.07.1989.
23. Warneke P., Bohlen A., Seefeld T. Texturing skin-pass rolls by high-speed laser melt injection, laser ablation, and electrolytic etching. Journal of Laser Applications. 2024. Vol. 36, Iss. 1. 012011. DOI: 10.2351/7.0001149
24. Traino A. I. Method of tempering annealed steel strip. Patent RF, No. 2464115. Applied: 31.05.2011. Published: 20.10.2012. Bulletin No. 29.
25. Mazur V. L., Pargamonov E. A. Mechanism of formation and possibilities of preventing “cross breaks” defects on the surface of cold-rolled strips. Stal. 2016. No. 8. pp. 43–50.
26. GOST 21014–88. Rolled products of ferrous metals. Surface defects. Terms and definitions. Introduced: 01.01.1990.
27. Mazur V. L. Causes of occurrence and methods of preventing cross breaks (fractures) of thin sheet steel. Stal. 2015. No. 12. pp. 21–28.
28. Prazdnikov A. V., Liepa I. I., Loginova K. S., Kachaylov A. P. Ways to eliminate ribbing on the surface of cold-rolled sheets. Metallurgicheskaya i gornorudnaya promyshlennost. 1976. No. 2. pp. 18–21.

29. Hoffman W., Aigner H. Reduction of “ripples” in skin-pass rolling of steel strips. Chernye Metally. 1998. No. 7. pp. 85–89.
30. Belov V. K., Shponko A. A., Lednev A. Yu. Topographic nature of the defect “ribbing”. Proizvodstvo prokata. 2000. No. 3. pp. 24–25.
31. Parshin V. S., Prisyazhny A. V. The “ribbing” defect during the skin-pass rolling of an automobile sheet. Sovremennye naukoemkie tekhnologii. 2005. No. 8. pp. 45–46.
32. Belov V. K., Shponko A. A. Vibration of rolling equipment and its influence on formation of surface macrotopography. Journal for Technology of Plasticity. 1998. Vol. 23, Iss. 2. pp. 87–94.
33. Kuznetsov V. V. Development and research of the technology for production of cold-rolled sheet from new high-strength automobile steel with increased corrosion resistance: Dissertation ... of Candidate of Engineering Sciences. Cherepovets, 2008. 120 p.
34. Gorkusha D. V., Komolova O. A., Grigorovich K. V., Alpatov A. V. et al. Criteria for achieving the BH effect in ultra-low carbon steels for deep drawing. Izvestiya Ferrous Metallurgy. 2020. Vol. 63, Iss. 3–4. pp. 201–210.
35. Özakin B. Experimental investigation of the effect of skin-pass rolling reduction ratio on corrosion behaviors of AISI 304 stainless steel sheet materials. Surface Topography: Metrology and Properties. 2023. Vol. 11, Iss. 2. 025004.
36. Köhler K., Kwiaton N., Bretschneider M. Skin pass rolling of high manganese steels. Materials Science Forum. 2016. Vol. 854. pp. 93–98.
37. Kurosaki Y., Shimazu Hirohata, T. R. Shiozaki J. M. Effect of skin-pass rolling direction on magnetic properties of semiprocessed nonoriented electrical steel sheets. IEEE Transactions on magnetic. 1999. Vol. 35, Iss. 9. No. 5. pp. 3370–3372.
38. Nasonov V. V., Rumyantsev M. I., Zhovner S. A. Development of a skin-pass rolling mode in a continuous annealing line for low-carbon steel strips. Modelirovanie i razvitie protsessov OMD. 2013. No. 19. pp. 110–116.
39. Rumyantsev M. I. On the possibility of increasing the stability of mechanical properties of cold-rolled products during annealing in continuous units. Modelirovanie i razvitie protsessov OMD. 2015. No. 21. pp. 89–95.
40. GOST 9045–93. Cold-rolled thin sheets of low-carbon steel for cold stamping. Specifications. Introduced: 01. 01. 1997.
41. Timofeeva M. A. Research and modeling of energy-power parameters of the skin-pass rolling process to improve the technology and equipment of tempering mills: thesis of inauguration of Dissertation … of Candidate of Engineering Sciences. Cherepovets, 2006. 24 p.
42. Timofeeva M. A., Garber E. A. New methodology for modeling friction parameters in the deformation zone of a tempering mill. Chernaya Metallurgiya. Byulleten nauchno-tekhnicheskoy i ekonomicheskoy informatsii. 2017. No. 8. pp. 60–64.
43. Bozhkov A. I., Kovalev D. A., Orekhov M. E., Degtyarev S. S. et al. Control of surface roughness formation of cold-rolled strips. Message 1. Stal. 2017. No. 10. pp. 22–25.
44. Bozhkov A. I., Kovalev D. A., Orekhov M. E., Degtyarev S. S. et al. Control of surface roughness formation of tempered strips. Message 2. Stal. 2017. No. 11. pp. 15–17.
45. Bozhkov A. I., Kovalev D. A., Orekhov M. E., Chereshnev V. V. Development of mathematical support and functional structure of the automated control system for the formation of strip surface roughness. Message 3. Stal. 2017. No. 12. pp. 37–40.
46. Ogarkov N. N., Zvyagina E. Y., Ismagilov R. R. Theoretical analysis of formation of automobile sheet roughness during temper rolling in shot-blasted rolls. Izvestiya Ferrous Metallurgy. 2019. Vol. 62, Iss. 8. pp. 600–605. DOI: 10.17073/0368-0797-2019-8-600-605
47. Zvyagina E. Yu., Ogarkov N. N., Kozlov A. V. Stabilization of roughness parameters of rolls of temper mill during idle running in stand. Blanking Productions in Mechanical Engineering (Press Forging, Foundry and Other Productions). 2024. Vol. 22, Iss. 1. pp. 28–34. DOI: 10.36652/1684-1107-2024-22-1-28-34
48. Ogarkov N. N., Zvyagina E. Yu., Gorbatyuk S. M., Sheshenin E. V. Analysis and mathematical modeling of reproduction of microgeometry of textured surface of roll on galvanized cold-rolled strip during its skin-pass rolling. Metallurg. 2024. Vol. 2. pp. 88–94.
49. Li X., Schulte C., Zhu R., Abel D. et al. Modeling and control of tribological properties for subsequent forming process in skin-pass rolling. Materials Research Proceedings. 2023. Vol. 28. pp. 2115–2125. DOI: 10.21741/9781644902479-226
50. Maksimov E. A. Calculation of the pulling force of a galvanized strip through the straightening and skin pass rolling unit. Chernye Metally. 2019. No. 9. pp. 13–16.
51. Kijima H. Influence of roll radius on contact condition and material deformation in skin-pass rolling of steel strip. Journal of Materials Processing Technology. 2013. Vol. 213, Iss. 10. pp. 1764–1771. DOI: 10.1016/j.jmatprotec.2013.04.011
52. Li R., Zhang Q., Zhang X., Yu M. et al. Control method for steel strip roughness in two-stand temper mill rolling. Chinese Journal of Mechanical Engineering (English Edition). 2015. Vol. 28, Iss. 3. pp. 573–579. DOI: 10.3901/CJME.2015.0310.027
53. Lostado Lorza R., Escribano García R., Somovilla Gomez F., Mac Donald B. J. Modeling the skinpass rolling process: A review. Materials Science and Materials Engineering. 2016. pp. 1–13. DOI: 10.1016/b978-0-12-803581-8.04027-3
54. Von Karman T. On the Theory of rolling. Zeitschrift für angewandte mathematik und mechanik. 1925. Vol. 5. pp. 130–141.
55. Tamano T. Finite element analysis of steady flow in metal processing. Journal of Japan Society for Technology of Plasticity. 1976. Vol. 16, Iss. 2. pp. 92–97.
56. Escribano R., Lostado R., Martínez-de-Pisón F. J., Pernía A. et al. Modelling a skin-pass rolling process by means of data mining techniques and finite element method. Journal of Iron and Steel Research International. 2012. Vol. 19, Iss. 5. pp. 43–49. DOI: 10.1016/S1006-706X(12)60098-3
57. Giarola A. M., Pereira P. H. R., Stemler P. A., Pertence A. E. M. et al. Strain heterogeneities in the rolling direction of steel sheets submitted to the skin pass: A finite element analysis. Journal of Materials Processing Technology. 2015. Vol. 216. pp. 234–247. DOI: 10.1016/j.jmatprotec.2014.09.015
58. Wu C., Zhang L., Qu P., Li S. et al. Surface texture transfer in skin-pass rolling with the effect of roll surface wear. Wear. 2021. Vol. 476. DOI: 10.1016/j.wear.2021.203764
59. Kijima H., Bay N. Skin-pass rolling I-Studies on roughness transfer and elongation under pure normal loading. International Journal of Machine Tools and Manufacture. 2008. Vol. 48, Iss. 12–13. pp. 1313–1317. DOI: 10.1016/j.ijmachtools.2008.06.005
60. Kijima H., Bay, N. Skin-pass rolling II-Studies of roughness transfer under combined normal and tangential loading. International Journal of Machine Tools and Manufacture. 2008. Vol. 48, Iss. 12–13. pp. 1308–1312. DOI: 10.1016/j.ijmachtools.2008.06.006
61. Kijima H. Influence of lubrication on roughness crushing in skin-pass rolling of steel strip. Journal of Materials Processing Technology. 2014. Vol. 216. pp. 1–9. DOI: 10.1016/j.jmatprotec.2014.08.010
62. Kozhevnikov A. V., Skripalenko M. M., Kozhevnikova I. A., Skripalenko M. N. Comparative evaluation of the kinematic parameters at symmetric and asymmetric cold rolling of strip using computer simulation. CIS Iron and Steel Review. 2023. Vol. 25. pp. 51–57.
63. Krymskaya O. A., Isaenkova M. G., Fesenko V. A., Minushkin R. A. Regularities of structure and texture development in austenitic steel during cold rolling and heat treatment. CIS Iron and Steel Review. 2022. Vol. 24. pp. 29–34.

Language of full-text русский
Полный текст статьи Получить
Назад