Журналы →  Горный журнал →  2023 →  №11 →  Назад

ПРАКТИЧЕСКАЯ ГЕОМЕХАНИКА. ГЕОФИЗИЧЕСКИЕ ИССЛЕДОВАНИЯ
Название Гравитационные поля аварийных участков рудников Верхнекамского месторождения калийных солей
DOI 10.17580/gzh.2023.11.05
Автор Бычков С. Г., Симанов А. А., Хохлова В. В.
Информация об авторе

Горный институт УрО РАН, Пермь, Россия

Бычков С. Г., зав. лабораторией, д-р геол.-минерал. наук, bsg@mi-perm.ru
Симанов А. А., научный сотрудник, канд. техн. наук
Хохлова В. В., младший научный сотрудник

Реферат

Приведены результаты ретроспективного анализа связи оседаний и провалов земной поверхности над шахтными полями Верхнекамского месторождения калийных солей с отрицательными локальными и динамическими аномалиями силы тяжести. Установлено, что растворение и разуплотнение карстующихся пород происходят в природных зонах с изначально пониженной плотностью, которые фиксируются отрицательными локальными аномалиями поля. Выявление природных зон пониженной плотности в подработанном массиве по локальным аномалиям гравитационного поля позволяет конкретизировать форму и место проявления техногенных деформаций в пределах подрабатываемой толщи.

Исследование выполнено при финансовой поддержке Министерства науки и образования РФ в рамках соглашения по государственному заданию № 075-03-2021-374 от 29.12.2020 г. (регистрационный номер 122012000398-0).

Ключевые слова Гравиразведка, мониторинг, аномалия гравитационного поля, калийные соли, оседания земной поверхности, провал, безопасность горных работ
Библиографический список

1. Osipov V. I., Baryakh A. A., Sanfirov I. A., Mamaev Yu. A., Yastrebov A. A. Hydrogeomechanical conditions of karst sinkhole formation in the area of potassium mines in Berezniki town, Perm Krai. Geoekologiya. Inzhenernaya geologiya. Gidrogeologiya. Geokriologiya. 2016. No. 2. pp. 142–148.
2. Gabriel G., Kobe M., Weise A., Timmen L. Monitoring of subrosion induced mass changes by time-lapse gravity surveys—Two case studies from Germany. The 25th European Meeting of Environmental and Engineering Geophysics, 2019. DOI: 10.3997/2214-4609.201902357
3. Weise A., Kersten T., Timmen L., Gabriel G., Schón S., Vogel D. Ein integrativer geodätisch-gravimetrischer Ansatz zur Erkundung von Subrosion im Erdfallgebiet Hamburg-Flottbek-Oberflächendeformation und Massentransfer. Fachbeiträge begutachtet. 2018. Vol. 125 (7). ss. 244–254.
4. Cooper A. H. Halite karst geohazards (natural and man-made) in the United Kingdom. Environmental Geology. 2002. Vol. 42. pp. 505–512.
5. Mike W. B., Styles P. The use of time-lapse microgravity to investigate and monitor an area undergoing surface subsidence: A case study. Symposium on the Application of Geophysics to Engineering and Environmental Problems. 2002. DOI: 10.4133/1.2927065
6. Pringle J. K., Styles P., Howell C. P., Branston M. W., Furner R. et al. Long-term time-lapse microgravity and geotechnical monitoring of relict salt mines, Marston, Cheshire, U. K. Geophysics. Vol. 77. No. 6. pp. 287–294.
7. Anikeyev S. G., Kuzmenko E. D., Bagriy S. M. et al. The results of gravimetric monitoring on the worked-out potassium salt deposit in the Precarpathian region. Monitoring of Geological Processes and Ecological Condition of the Environment : XIIІ International Scientific Conference Proceedings. Kiev, 2019. DOI: 10.3997/2214-4609.201903167
8. Dubovenko Y. I., Chorna O. A. To the problem of gravity monitoring of the geological environment. Reports of the National Academy of Sciences of Ukraine. 2011. No. 7. pp. 102–105.
9. Tiapkin O., Kendzera O., Pihulevskyi P., Dovbnich M. Complex Geophysical Research of Near Surface Sustainability of Mining Waste-Storages in Central Ukraine. The 25th European Meeting of Environmental and Engineering Geophysics. 2019. DOI: 10.3997/2214-4609.201902490
10. Al-Zoubi A., Eppelbaum L., Abueladas A., Ezersky M., Akkawi E. Removing regional trends in microgravity in complex environments: Testing on 3D model and field investigations in the Eastern Dead Sea Coast (Jordan). International Journal of Geophysics. 2013. Vol. 1. DOI: 10.1155/2013/341797
11. Eppelbaum L. V., Ezersky M., Al-Zoubi A., Goldshmidt V., Legchenko A. Study of the factors affecting the karst volume assessment in the Dead Sea sinkhole problem using microgravity field analysis and 3-D modeling. Advances in GeoSciences. 2008. Vol. 19. pp. 97–115.
12. Jacob T., Chery J., Bayer R., Moigne N. L., Boy J.-P. et al. Time-lapse surface to depth gravity measurements on a karst system reveal the dominant role of the epikarst as a water storage entity. Geophysical Journal International. 2009. Vol. 177(2). P. 347–360.
13. Paine J. G., Buckley S. M., Collins E. W., Wilson C. R. Assessing collapse risk in evaporite sinkhole-prone areas using microgravimetry and radar interferometry. Journal of Environmental and Engineering Geophysics. 2012. Vol. 17, Iss. 2. pp. 75–87.
14. Rybakov M., Goldshmidt V., Fleischer L., Rotstein Y. Cave detection and 4D monitoring: A microgravity case history near the Dead Sea. The Leading Edge. 2001. Vol. 20(8). pp. 896–900.
15. Alekseev S. I. Results of gravity observations in the Solikamsk Region. All-Union Geophysical Conference Proceedings (With Comments), Sverdlovsk, 1932. V. I. Kostitsyn (Exec.). Perm, 2012. pp. 230–234.
15. Bychkov S. G., Michurin A. V., Simanov A. A., Khokhlova V. V. Gravity studies of the geo-environment in areas of intensive mineral exploration. Gornyi Zhurnal. 2019. No. 12. pp. 90–94.
17. Bychkov S. G., Prostolupov G. V., Shcherbinina G. P. Gravimetric monitoring of the development territory at Verkhnekamskiy potash salt deposit. Gornyi Zhurnal. 2013. No. 6. pp. 22–25.
18. Novoselitsky V. M., Bychkov S. G., Shcherbinina G. P., Prostolupov G. V., Yakovlev S. I. Gravimetry research of change in density characteristic of geological environment under the impact of mining. Gornyi Zhurnal. 2008. No. 10. pp. 37–41.

Language of full-text русский
Полный текст статьи Получить
Назад