Журналы →  Горный журнал →  2023 →  №9 →  Назад

ПРОМЫШЛЕННАЯ БЕЗОПАСНОСТЬ И ОХРАНА ТРУДА
Название Мультипликативный метод оценки взрывопожароопасных свойств рудничной атмосферы при поступлении в воздушную среду углеводородных газов
DOI 10.17580/gzh.2023.09.05
Автор Родионов В. А., Серегин А. С., Иконников Д. А.
Информация об авторе

Санкт-Петербургский горный университет императрицы Екатерины II, Санкт-Петербург, Россия:

Родионов В. А., доцент, канд. техн. наук, Rodionov_VA@pers.spmi.ru
Серегин А. С., доцент, канд. техн. наук
Иконников Д. А., доцент, канд. техн. наук

Реферат

Приведены краткие статистические данные о численности аварий и смертельно травмированных рабочих на объектах подземной добычи полезных ископаемых. Сделан вывод о недостаточности принимаемых мер для предотвращения чрезвычайных ситуаций. В качестве метода оценки взрывоопасных свойств рудничной атмосферы предложено использовать мультипликативный метод. Рекомендовано разработать методику оценки взрывопожароопасности рудничной атмосферы, учитывающую более широкий спектр веществ, которые могут поступить в горные выработки в результате осуществления тех или иных технологических процессов.

Ключевые слова Рудничная атмосфера, рудник, нефтешахта, аналитическая хроматография, масс-спектрометрия, взрывопожароопасность, вредные газы, жидкие углеводороды
Библиографический список

1. Federal Environmental, Industrial and Nuclear Supervision Service Annual 2021 Report. Moscow : NTTs PB, 2022. 407 p.
2. Petrenko I. E. Russia’s coal industry performance for January–December, 2021. Ugol. 2022. No. 3. pp. 9–23.
3. Kabanov E. I. Allowable occupational injury risk assessment in coal mining industry. GIAB. 2022. No. 5. pp. 167–180.
4. Kabanov E. I., Korshunov G. I., Rodionov V. A. Expert system based on fuzzy logic for assessment of methane and dust explosion risk in coal mines. Gornyi Zhurnal. 2019. No. 8. pp. 85–88.
5. Rodionov V. A., Karpov G. N., Leisle A. V. Methodological approach to the need to assess the explosion and fire hazard properties of sulfide-containing polymetallic ores. GIAB. 2022. No. 6-1. pp. 198–213.
6. Rodionov V., Tumanov M., Skripnik I., Kaverzneva T., Pshenichnaya C. Analysis of the fractional composition of coal dust and its effect on the explosion hazard of the air in coal mines. IOP Conference Series: Earth and Environmental Science. 2022. Vol. 981, No. 3. 032024. DOI: 10.1088/1755-1315/981/3/032024
7. Abiev Z. A., Rodionov V. A., Paramonov G. P., Chernobay V. I. Method to investigate influence of inhibitory and phlegmatizing agents on ignitability and explosibility of coal dust. GIAB. 2018. No. 5. pp. 26–34.
8. Korshunov G. I., Rudakov M. L., Kabanov E. I. The use of a risk-based approach in safety issues of coal mines. Journal of Environmental Management and Tourism. 2018. Vol. IX, No. 1(25). pp. 181–186.
9. Kornev A. V., Korshunov G. I., Kudelas D. Reduction of dust in the longwall faces of coal mines: problems and perspective solutions. Acta Montanistica Slovaca. 2021. Vol. 26(1). pp. 84–97.
10. Gridina E. B., Kovshov S. V., Borovikov D. O. Hazard mapping as a fundamental element of OSH management systems currently used in the mining sector. Nauchnyi vestnik Natsionalnogo gornogo universiteta. 2022. No. 1. pp. 107–115.
11. Vasilets V. N., Afanasev P. I., Pavlovich A. A. Safe operation of mining-and-transport system under impact of seismic shot waves. GIAB. 2020. No. 1. pp. 26–35.
12. Fomin S. I., Ivanov V. V., Semenov A. S., Ovsyannikov M. P. Incremental open-pit mining of steeply dipping ore deposits. ARPN Journal of Engineering and Applied Sciences. 2020. Vol. 15, No. 11. pp. 1306–1311.
13. Klimova I. V., Smirnov Yu. G., Rodionov V. A. Modeling of the interrelations between the working conditions and the health of oil sheds personnel using fuzzy logic. Bezopasnost truda v promyshlennosti. 2022. No. 1. pp. 46–50.
14. Semin M. A., Isaevich A. G., Trushkova N. A., Bublik S. A., Kazakov B. P. Calculating dispersion of air pollutants in mines. Journal of Mining Science. 2022. Vol. 58, No. 2. pp. 246–256.
15. Kaledina N. O., Malashkina V. A. Indicator assessment of the reliability of mine ventilation and degassing systems functioning. Journal of Mining Institute. 2021. Vol. 250. pp. 553–561.
16. Romanchenko S. B., Naganovskiy Yu. K., Kornev A. V. Innovative ways to control dust and explosion safety of mine workings. Journal of Mining Institute. 2021. Vol. 252. pp. 927–936.
17. Skopintseva O. V., Balovtsev S. V. Air quality control in coal mines based on gas monitoring statistics. GIAB. 2021. No. 1. pp. 78–89.
18. Balovtsev S. V. Comparative assessment of aerological risks at operating coal mines. GIAB. 2021. No. 2-1. pp. 5–17.
19. Khokhlov S. V., Sokolov S. T., Vinogradov Yu. I., Frenkel I. B. Conducting industrial explosions near gas pipelines. Journal of Mining Institute. 2021. Vol. 247. pp. 48–56.

20. Xinchun Li, Xiaolin Zhang, Quanlong Liu, Yueqian Zhang, Xiao Gu et al. Research on coal mine building compliance inspection system based on accident causation and BIM in China. International Journal of Environmental Research and Public Health. 2022. Vol. 19, Iss. 24. 16466. DOI: 10.3390/ijerph192416466
21. Zubov V. P., Phuc L. Q. Development of resource-saving technology for excavation of flat-lying coal seams with tight roof rocks (on the example of the Quang Ninh coal basin mines). Journal of Mining Institute. 2022. Vol. 257. pp. 795–806.
22. Semenov A. S., Kuznetcov V. S. Assessment of level of risk in decision-making in terms of career exploitation. International Journal of Economics and Financial Issues. 2015. Vol. 5, No. 3S. Special Issue. pp. 165–172.
23. Gendler S., Prokhorova E. Risk-based methodology for determining priorit y directions for improving occupational safety in the mining industry of the Arctic Zone. Resources. 2021. Vol. 10, Iss. 3. DOI: 10.3390/resources10030020
24. Kalach A. V., Cherepakhin A. M., Kalach E. V. Fire hazard assessment methodology for combustible medium based on substances handling at oil and gas facilities. Tekhnosfernaya bezopasnost. 2019. No. 4(25). pp. 57–61.
25. Rowley J. R., Rowley R. L., Wilding W. V. Prediction of pure-component flash points for organic compounds. Fire and Materials. 2011. Vol. 35, Iss. 6. pp. 343–351.
26. Nikitina S. I., Kononov M. A., Stepanov Yu. A. Creation of a system of automated monitoring and accounting of roof offsets of underground products. East European Scientific Journal. 2020. No. 5-2(57). pp. 55–59.
27. Kazanin O. I., Ilinets A. A. Ensuring the excavation workings stability when developing excavation sites of flat-lying coal seams by three workings. Journal of Mining Institute. 2022. Vol. 253. pp. 41–48.
28. Isaevich A. G., Starikov A. N., Maltsev S. V. Improvement of air sampling method to determine relative concentration of combustion gases in mine air. GIAB. 2021. No. 4. pp. 143–153.
29. Maltsev S. V., Chaykovskiy I. I. Oxidation of sulfide ore in complex ore deposits. Gornoe ekho. 2022. No. 2(87). pp. 114–118.
30. Farakhutdinova Z. G., Bakhonina E. I., Shutov N. V. Improvement of interaction mechanism between oil refining enterprises and contractors. Bezopasnost tekhnogennykh i prirodnykh sistem. 2022. No. 3. pp. 18–23.
31. Mamaev K. V. Application of water steam in the oil and gas industry. Available at: http://rou.ru/news/item/ispolzovani-vodyanogo-para-v-neftegazovoy-otrasli-5/ (accessed: 15.06.2023).
32. Shafranik Yu. K., Kryukov V. A. Oil in space and “oil space”. Energeticheskaya politika. 2018. No. 3. pp. 69–73.
33. Mustafin I. A., Sidorov G. M., Stankevich K. E., Bayram-Ali T. M., Salishev A. I. et al. Hydrocatalytic processes of heavy oil factions processing with use of perspective nanoscale catalysts. Fundamentalnye issledovaniya. 2018. No. 7. pp. 22–28.
34. Kiekbaev A. A., Aliev F. A., Mitroshin A. V., Andreev D. V., Vakhin A. V. Heavy oil conversion in the presence of rock-forming mineral components in aqua-thermolysis. Neftegaz.RU. 2021. No. 4(112). pp. 24–27.
35. Poletaeva O. Yu., Leontev A. Yu. Heavy, ultra-viscous, bituminous, metal-bearing oils and oil-bearing sandstones. NefteGazoKhimiya. 2019. No. 1. pp. 19–24.
36. Pisarev D. I. Classical and modern methods of mass-spectrometry. Nauchnye vedomosti Belgorodskogo gosudarstvennogo universiteta. Ser.: Meditsina. Farmatsiya. 2012. No. 10-2(129). pp. 5–11.

Полный текст статьи Мультипликативный метод оценки взрывопожароопасных свойств рудничной атмосферы при поступлении в воздушную среду углеводородных газов
Назад