Журналы →  Горный журнал →  2023 →  №9 →  Назад

ЭКОНОМИКА, ОРГАНИЗАЦИЯ И УПРАВЛЕНИЕ
Название Методический подход к оценке влияния гранулометрического состава взорванной горной массы на стоимость горных работ
DOI 10.17580/gzh.2023.09.04
Автор Маринин М. А., Маринина О. А., Рахманов Р. А.
Информация об авторе

Санкт-Петербургский горный университет императрицы Екатерины II, Санкт-Петербург, Россия:

Маринин М. А., зав. кафедрой взрывного дела, канд. техн. наук
Маринина О. А., зав. кафедрой отраслевой экономики, канд. экон. наук, Marinina_OA@pers.spmi.ru

 

Институт проблем комплексного освоения недр им. академика Н. В. Мельникова РАН, Москва, Россия:
Рахманов Р. А., научный сотрудник, канд. техн. наук

Реферат

Разработан методический подход к оптимизации стоимости вскрышных работ в зависимости от гранулометрического состава взорванной горной массы. Предложена укрупненная методика оценки удельных затрат на вскрышные работы, обоснованы принципы факторной зависимости гранулометрического состава взорванной горной массы и стоимости проведения горных работ; выполнены апробация методики на основе экспериментальных данных, полученных в результате серии взрывов в условиях золоторудного карьера, и верификация полученных расчетных значений путем сопоставления удельных затрат методом укрупненного счета и прямых экономических расчетов; доказана валидность предложенного методического подхода на основе учета параметров удельной стоимости эксплуатации и производительности оборудования на вскрышных работах. Результаты исследования могут быть использованы в инженерных изысканиях при обосновании параметров проекта буровзрывных работ с учетом технологических особенностей горнотранспортного комплекса.

Ключевые слова Карьер, открытые горные работы, взорванная горная масса, гранулометрический состав, буровзрывные работы, экскавация, транспортирование, себестоимость, удельная стоимость эксплуатации оборудования, производительность
Библиографический список

1. Fomin S. I., Ivanov V. V., Semenov A. S., Ovsyannikov M. P. Incremental open-pit mining of steeply dipping ore deposits. ARPN Journal of Engineering and Applied Sciences. 2020. Vol. 15, No. 11. pp. 1306–1311.
2. Litvinenko V. S., Petrov E. I., Vasilevskaya D. V., Yakovenko A. V., Naumov I. A et al. Assessment of the role of the state in the management of mineral resources. Journal of Mining Institute. 2023. Vol. 259. pp. 95–111.
3. Kuznetsov D. V., Kosolapov A. I. Research of the influence of the excavating and automotive equipment complexes parameters on the speed of faces advance. IOP Conference Series: Earth and Environmental Science. 2021. Vol. 626. 012020. DOI: 10.1088/1755-1315/626/1/012020
4. Matrokhina K. V., Trofimets V. Ya., Mazakov E. B., Makhovikov A. B., Khaykin M. M. Development of methodology for scenario analysis of investment projects of enterprises of the mineral resource complex. Journal of Mining Institute. 2023. Vol. 259. pp. 112–124.
5. Yakovlev V. L., Glebov A. V., Bersenyov V. A., Kulniyaz S. S., Ligotskiy D. N. Influence of an installation angle of the conveyor lift on the volumes of mining and preparing work at quarries at the cyclic-flow technology of ore mining. News of the Academy of sciences of the Republic of Kazakhstan. Series of geology and technical sciences. 2020. No. 4(442). pp. 127–137.
6. McKee D. J. Understanding mine to mill. Brisbane : The Cooperative Research Centre for Optimising Resource Extraction, 2013. 96 p.
7. Cameron P., Drinkwater D., Pease J. The ABC of mine to mill and metal price cycles. Proceedings of the 13th AusIMM Mill Operators’ Conference. Melbourne : The Australasian Institute of Mining and Metallurgy, 2016. pp. 349–358.
8. Ozdemir B., Kumral M. A system-wide approach to minimize the operational cost of bench production in open-cast mining operations. International Journal of Coal Science & Technology. 2019. Vol. 6, Iss. 1. pp. 84–94.
9. Kuznetsov D. V., Odaev D. G., Linkov Ya. E. Peculiarities of technological motor transport selection used for deep North open pits operation. GIAB. 2017. No. 5. pp. 54–65.
10. Varannai B., Johansson D., Schunnesson H. Crusher to Mill Transportation Time Calculation—The Aitik Case. Minerals. 2022. Vol. 12, Iss. 2. 147. DOI: 10.3390/min12020147
11. Isheiskiy V. A., Martynushkin E. A., Vasiliev A. S., Smirnov S. A. Data collection features of during the blast wel ls drilling for the formation of geostructural block models. Ustoychivoe razvitie gornykh territoriy. 2021. Vol. 13, No. 4(50). pp. 608–619.
12. Moldovan D. V., Chernobay V. I., Sokolov S. T., Bazhenova A. V. Design concepts for explosion products locking in chamber. GIAB. 2022. No. 6-2. pp. 5–17.
13. Dolzhikov V. V., Ryadinsky D. E., Yakovlev A. A. Influence of decelerati on intervals on the amplitudes of stress waves during the explosion of a system of borehole charges. GIAB. 2022. No. 6-2. pp. 18–32.
14. Alenichev I. A., Rakhmanov R. A. Empirical regularities investigation of rock mass discharge by explosion on the free surface of a pit bench. Journal of Mining Institute. 2021. Vol. 249. pp. 334–341.
15. Rakishev B. R., Orynbay A. A., Auezova A. M., Kuttybaev A. E. Grain size composition of broken rocks under different conditions of blasting. GIAB. 2019. No. 8. pp. 83–94.
16. Afanasev P., Pasynkov A., Kurta I. Optimal parameters for drilling explosions when developing coal deposits by open-pit method. Topical Problems of Green Architecture, Civil and Environmental Engineering : International Scientific Conference. 2019. E3S Web of Conferences. 2020. Vol. 164. 01012. DOI: 10.1051/e3sconf/202016401012
17. Afanasev P. I., Menzhulin M. G. Change in the average lump size in the crushing zone based on the calculation of energy dissipation. Izvestiya Tulskogo gosudarstvennogo universiteta. Nauki o Zemle. 2022. No. 4. pp. 408–419.
18. Koteleva N., Khokhlov S., Frenkel I. Digitalization in open-pit mining: A new approach in monitoring and control of rock fragmentation. Applied Sciences. 2021. Vol. 11, Iss. 22. 10848. DOI: 10.3390/app112210848
19. Rakishev B. R., Orynbay A. A., Musakhan A. B. Granulometric composition of rock mass and blasted rock mass at different particle size scales of natural rocks and pieces of rock. Vzryvnoe delo. 2021. No. 132-89. pp. 7–26.
20. Zharikov I. F., Seinov N. P. About the preparation sveby smyrofor mass for schema cyclepotry technology. Vzryvnoe delo. 2020. No. 126-83. pp. 16–27.
21. Saadoun A., Fredj M., Boukarm R., Had ji R. Fragmentation analysis using digital image processing and empirical model (KuzRam): A comparative study. Journal of Mining Institute. 2022. Vol. 257. pp. 822–832.
22. Opanasenko P. I., Isaichenkov A. B. Optimization of semi-hard overburden fragmentation by blasting in Tugnuisky open pit mine. Gornyi Zhurnal. 2015. No. 9. pp. 54–57.
23. Fomin S. I., Ovsyannikov M. P. Substantiation of the optimal performance parameters for a quarry during the stage-wise development of steeply dipping ore deposits. Journal of Mining Institute. 2022. DOI: 10.31897/PMI.2022.73
24. Kurganov V. M., Gryaznov M. V., Kolobanov S. V. Assessment of ope rational reliability of quarry excavator-dump truck complexes. Journal of Mining Institute. 2020. Vol. 241. pp. 10–21.
25. Ivanov S. L., Ivanova P. V., Kuvshinkin S. Yu. Promising model range career excavators operating time assessment in real operating conditions. Journal of Mining Institute. 2020. Vol. 242. pp. 228–233.
26. Khokhlov S. V., Vinogradov Yu. I., Noskov A. P., Bazhenova A. V. Predicting displacements of ore body boundaries in generation of blasted rock pile. GIAB. 2023. No. 3. pp. 40–56.
27. Dey S., Mandal S. K., Bhar C. Application of MR and ANN in the prediction of the shovel cycle time, thereby improving the performance of the shovel–dumper operation – A case study. Journal of the Southern African Institute of Mining and Metallurgy. 2022. Vol. 122, No. 10. pp. 597–606.
28. Brunton I., Thornton D., Hodson R., Sprott D. Impact of Blast Fragmentation on Hydraulic Excavator Dig Time. Proceedings of the 5th Large Open Pit Mining Conference. Kalgoorlie, 2002. pp. 39–48.
29. Beyglou A., Jo hansson D., Schunnesson H. Target fragmentation for efficient loading and crushing – the Aitik case. Journal of the Southern African Institute of Mining and Metallurgy. 2017. Vol. 117, No. 11. pp. 1053–1062.
30. Ponomarenko T., Nevskaya M ., Jonek-Kowalska I. Mineral resource depletion assessment: Alternatives, problems, results. Sustainability. 2021. Vol. 13, Iss. 2. 862. DOI: 10.3390/su13020862
31. Tsvetkova A., Katysheva E. Present problems of mineral and raw materials resources repl enishment in Russia. Proceedings of the 19th International Multidisciplinary Scientific GeoConference. Albena, 2019. Vol. 19, Iss. 5.3. pp. 573–578.
32. Makharatkin P. N., Abdulaev E. K., Vi shnyakov G. Yu., Botyan E. Yu., Pushkarev A. E. Increase of efficiency of dump trucks functioning on the basis of justification of their rational s peed by means of simulation modeling. GIAB. 2022. No. 6-2. pp. 237–250. DOI: 10.25018/0236_1493_2022_62_0_237
33. Nikkhah A., Vakylabad A. B., Hassanzadeh A., Niedoba T., Surowiak A. An evaluation on the impact of ore fragmented by blasting on mining performance. Minerals. 2022. Vol. 12, Iss. 2. 258. DOI: 10.3390/min12020258
34. Bo Ke, Ruohan Pan, Jian Zhang, Wei Wang, Yong Hu et al. Parameter optimization and fragmentation prediction of fan-shaped deep hole blasting in Sanxin Gold and Copper Mine. Minerals. 2022. Vol. 12, Iss. 7. 788. DOI: 10.3390/min12070788
35. Navarro T. V. F., Curi A., Lopes P. F. T. Minimização efetiva de custos de produção em mina à céu aberto. Ouro Preto, 2017. 94 p.
36. Isaychenkov A. B. Algorithm of minimization of expenses at use of the Bucyrus 495HD excavator on Tugnuysky coal mine. GIAB. 2014. No. 9. pp. 251–253.
37. Ilyushin Yu. V., Kapostey E. I. Developing a comprehensive mathematical model for aluminium production in a Soderberg Electrolyser. Energies. 2023. Vol. 16. Iss. 17. 6313. DOI: 10.3390/en16176313

Полный текст статьи Методический подход к оценке влияния гранулометрического состава взорванной горной массы на стоимость горных работ
Назад