Журналы →  Горный журнал →  2023 →  №9 →  Назад

ФИЗИКА ГОРНЫХ ПОРОД И ПРОЦЕССОВ
Название О некоторых подходах к численному моделированию динамического разрушения массива горных пород при ведении буровзрывных работ
DOI 10.17580/gzh.2023.09.03
Автор Зацепин М. А., Господариков А. П.
Информация об авторе

Санкт-Петербургский горный университет императрицы Екатерины II, Санкт-Петербург, Россия:

Зацепин М. А., доцент, канд. физ.-мат. наук, zatsepin_ma@pers.spmi.ru
Господариков А. П., зав. кафедрой, проф., д-р техн. наук

Реферат

Представлены результаты исследований по разработке математических моделей сейсмического воздействия буровзрывных работ на подземные сооружения (газо- и нефтепроводы, горные выработки). По результатам численного моделирования сделан вывод о надежности прогнозирования напряженного состояния породного массива, вмещающего подземные сооружения, на основе взаимосвязанных программных комплексов.

Ключевые слова Математическая модель, горная выработка, трубопровод, динамическое разрушение породного массива, буровзрывные работы, сейсмовзрывная волна, вычислительная программа, язык программирования
Библиографический список

1. Protosenya A. G., Alekseev A. V., Verbilo P. E. Prediction of the stress-strain state and stability of the front of tunnel face at the intersection of disturbed zones of the soil mass. Journal of Mining Institute. 2022. Vol. 254. pp. 252–260.
2. Marinin M. A., Karasev M. A., Pospehov G. B., Pomortseva A. A., Kondakova V. N. et al. Comprehensive study of filtration properties of pelletized sandy clay ores and filtration modes in the heap leaching stack. Journal of Mining Institute. 2023. Vol. 259. pp. 30–40.
3. Gospodarikov A. P., Trofimov A. V., Kirkin A. P. Evaluation of deformation characteristics of brittle rocks beyond the limit of strength in the mode of uniaxial servohydraulic loading. Journal of Mining Institute. 2022. Vol. 256. pp. 539–548.
4. Galchenko Yu. P., Eremenko V. A. Evolution of secondary stress field during underground mining of thick ore bodies. Eurasian Mining. 2021. No. 1. pp. 21–24.
5. Ekvist B. V., Barnov N. G. Explosive fragmentation of rock masses with heterogeneous structure. Gornaya promyshlennost. 2021. No. 3. pp. 135–138.
6. Shabarov A. N., Kuranov A. D. Basic development trends in mining sector in complicating geotechnical conditions. Gornyi Zhurnal. 2023. No. 5. pp. 5–10.
7. Verkholantsev A. V., Dyagilev R. A., Shulakov D. Yu., Shkurko A. V. Monitoring of earthquake loads from blasting in the Shakhtau Open Pit Mine. Journal of Mining Science. 2019. Vol. 55, No. 2. pp. 229–238.
8. Zhukova S. A., Zhuravleva O. G., Onuprienko V. S., Streshnev A. A. Seismic behavior of rock mass in mining rockburst-hazardous deposits in the Khibiny Massif. GIAB. 2022. No. 7. pp. 5–17.
9. Demenkov P. A., Komolov V. V. Study of influence of the deep pit construction on soil mass in flat and spatial formulation. GIAB. 2023. No. 6. pp. 97–110.
10. Dashko R. E., Lokhmatikov G. A. Comprehensive safety assessment of radioactive waste disposal in clayey formations (case study of St. Petersburg region). GIAB. 2022. No. 10-1. pp. 66–76.
11. Tsibaev S. S., Renev A. A., Pozolotin A. S., Mefodiev S. N. Assessment of seismic impacts on stability of openings in underground mines. GIAB. 2020. No. 2. pp. 101–111.
12. Marinin M. A., Karasev M. A., Pospekhov G. B., Pomortseva A. A., Sushkova V. I. Engineering and geological parameters for heap leaching of gold from low-grade sandy clay ores: a feasibility study. GIAB. 2023. No. 9. pp. 22–37.
13. Kazanin O. I., Ilinets A. A. Ensuring the excavation workings stability when developing excavation sites of flat-lying coal seams by three workings. Journal of Mining Institute. 2022. Vol. 253. pp. 41–48.
14. Litvinenko V. S., Dvoynikov M. V., Trushko V. L. Elaboration of a conceptual solution for the development of the Arctic shelf from seasonally flooded coastal areas. International Journal of Mining Science and Technology. 2022. Vol. 32, Iss. 1. pp. 113–119.
15. Kotikov D. A., Shabarov A. N., Tsirel S. V. Connecting seismic event distribution and tectonic structure of rock mass. Gornyi Zhurnal. 2020. No. 1. pp. 28–32.
16. Galchenko Yu. P., Eremenko V. A., Kosyreva M. A., Vysotin N. G. Features of secondary stress field formation under anthropogenic change in subsoil during underground mineral mining. Eurasian Mining. 2020. No. 1. pp. 9–13.
17. Protosenya A. G., Belyakov N. A., Bouslova M. A. Modelling of the stress-strain state of block rock mass of ore deposits during development by caving mining systems. Journal of Mining Institute. 2023. Vol. 262. pp. 619–627.
18. Han Liang, Li Hongjiang, Liu Dianshu, Ling Tianlong, Li Chen et al. Probability analysis for influence of time-delay error of detonators on superposed seismic wave vibration reduction. Journal of Vibration and Shock. 2019. Vol. 38, No. 3. pp. 96–101.
19. Vennes I., Mitri H., C hinnasane D. R., Yao M. Large-scale destress blasting for seismicity control in hard rock mines: A case study. International Journal of Mining Science and Technology. 2020. Vol. 30, Iss. 2. pp. 141–149.
20. Jian-po Liu, Shi-da Xu, Yuan-hui Li, Gang Lei. Analysis of rock mass stability based on mining-induced seismicity: A case study at the Hongtoushan Copper Mine in China. Rock Mechanics and Rock Engineering. 2019. Vol. 52, No. 1. pp. 265–276.
21. Etkin M. B., Azarkovich A. E. Blasting in Power Generation and Industrial Engineering : Theoretical and Practical Guidance. Moscow : Izdatelstvo Moscovskogo gosudarstvennogo gornogo universiteta, 2004. 317 p.
22. Sidorov D. V., Potapchuk M. I., Sidlyar A. V., Kursakin G. A. Assessment of rock-burst hazard in deep layer mining at Nikolayevskoye Field. Journal of Mining Institute. 2019. Vol. 238. pp. 392–398.
23. Komatitsch D., Tromp J. A perfectly matched layer absorbing boundary condition for the second-order seismic wave equation. Geophysical Journal International. 2003. Vol. 154, Iss. 1. pp. 146–153.
24. Love A. E. H. A Treatise on the Mathematical Theory of Elasticity. 4th ed. New York : Dover Publications, 1944. 643 с.
25. Grigoryan S. S. To solution of the task of underground explosion in soft soils. Applied Mathematics and Mechanics. 1964. Vol. 28(2). pp. 1070–1075.
26. Grigoryan S. S. An approximate solution of the problem of the penetration of a body into soil. Fluid Dynamics. 1993. Vol. 28, Iss. 4. pp. 444–449.
27. Kucukcoban S., Kallivokas L. F. Mixed perfectly-matched-layers for direct transient analysis in 2D elastic heterogeneous media. Computer Methods in Applied Mechanics and Engineering. 2011. Vol. 200, No. 1-4. pp. 57–76.
28. Sadovsky M. A. Geophysics and physics of explosion: Selectals. Moscow : Nauka, 2004. 439 p.
29. Ilyushin A.A., Rashidov T. On the action of a seismic wave on underground pipelines. Izvestiya Akademii nauk Uzbekskoy SSR. Seriya tekhnicheskikh nauk. 1971. No. 1. pp. 38–42.
30. Etkin M. B., Azarkovich A. E. Blastings in energetic and industrial construction. Moscow : Izdatelstvo MGGU, 2004. 317 p.
31. Vallander S. V. Lectures on hydroaeromechanics. Saint-Petersburg : Izdatelstvo SPbGU, 2005. 304 p.
32. Novozhilov V. V., Chernykh K. F., Mikhaylovskiy E. I. Linear theory of thin shells. Leningrad : Politekhnika, 1991. 656 p.
33. Novozhilov V. V. Theory of elasticity. Leningrad : Sudpromgiz, 1958. 370 p.
34. Samarskiy A. A. The theory of difference schemes. Moscow : Nauka, 1989. 616. p.
35. Godunov S. K. Equations of mathematical physics. 2nd revised and enlarged edition. Moscow : Nauka, 1979 . 3 92 p.
36. Godunov S. K., Zabrodin A. V., Ivanov M. Ya., Krayko A. N., Prokopov G. P. Numerical solution of multidimensional problems of gas dynamics. Moscow : Nauka, 1976. 400 p.
37. Sedov L. I. Continuum mechanics. 2nd revised a nd enlarged edition. Moscow : Nauka, 1970. Vol. 2. 568 p.
38. Vykhodtsev Ya. N. Visualization of seismic-blast waves exposure to the rock mass surrounding the excavation. Present-Day Educational Technologies in Natural and Humanitarian Sciences : IV International Conference Proceedings. Saint-Petersburg : Sankt-Peterburgskiy gornyi universitet, 2017. pp. 300–305.

Полный текст статьи О некоторых подходах к численному моделированию динамического разрушения массива горных пород при ведении буровзрывных работ
Назад