| ArticleName |
Gearless modular electric drive of a conveyor roaster |
| References |
1. Ugarov A. A., Efendiev N. T., Kretov S. I., Sharkovskiy D. O. et al. Energyefficient fourth-generation roaster MOK-1-592M. Stal. 2020. No. 3. pp. 2–7. 2. Varichev A. V., Ugarov A. A., Efendiev N. T., Kretov S. I. et al. Engineering and commissioning of an advanced roaster MOK-1-592 at Mikhaylovsky GOK. Gornaya promyshlennost. 2017. No. 3. pp. 16–20. 3. Abzalov V. M., Bragin V. V., Vyatkin A. A., Evstyugin S. N. et al. Design of a new generation conveyor roaster. Stal. 2008. No. 12. pp. 13, 14. 4. Dli M. I., Vlasova E. A., Sokolov A. M., Morgunova E. V. Creation of a chemical-technological system digital twin using the Python language. Journal of Applied Informatics. 2021. Vol. 16, No. 1. pp. 22–31. 5. Bokovikov B. A., Bragin V. V., Malkin V. M., Naydich M. I. et al. Mathematical model of a conveyor roaster as a tool for improving the machine’s heat balance. Stal. 2010. No. 9. pp. 33–37. 6. Doletskaya L. I., Ziryukin V. I., Solopov R. V. The practice of building a software model of a power grid object for understanding the operation of digital relay protection means. Journal of Applied Informatics. 2021. Vol. 16, No. 4. pp. 83–95. 7. Borisov V. V., Kurilin S. P., Prokimnov N. N., Chernovalova M. V. Fuzzy cognitive modeling of heterogeneous electromechanical systems. Journal of Applied Informatics. 2021. Vol. 16, No. 1. pp. 32–39. 8. Yamamura S. Theory of linear induction motors. Translated from English. Leningrad : Energoatomizdat, 1983. 180 p. 9. Creppe R. C., Ulson J. A. C., Rodrigues J. F. Influence of design parameters on linear Induction motor end effect. IEEE Transactions on Energy Conversion. 2008. Vol. 23, No. 2. pp. 358–362. 10. Merlin M. N. J., Ganguly C., Kowsalya M. Mathematical modelling of linear induction motor with and without considering end effects using different references. IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems. 2016. pp. 1–5. 16673269. 11. Cho H., Liu Y., Kim K. A. Short-primary linear induction motor modeling with end effects for electric transportation systems. International Symposium on Computer, Consumer and Control. 2018. pp. 338–341. 12. Sarapulov F. N., Smolianov I. A. A study of the conveyor train linear induction motor. Izvestiya vuzov. Elektromekhanika. 2019. Vol. 62, No. 1. pp. 39–43. 13. Kurilin S. P., Dli M. I., Rubin Y. B., Chernovalova M. V. Methods and means of increasing operation efficiency of the fleet of electric motors in nonferrous metallurgy. Non-ferrous Metals. 2020. No. 2. pp. 73–78. 14. Kurilin S. P., Dli M. I., Sokolov A. M. Linear induction motors for nonferrous metallurgy. Non-ferrous Metals. 2021. No. 1. pp. 67–73. 15. Smolyanov I., Sarapulov F., Tarasov F. Calculation of linear induction motor features by detailed equivalent circuit method taking into account nonlinear electromagnetic and thermal properties. Computers and Mathematics with Applications. 2019. Vol. 78, No. 9. pp. 3187–3199. 16. Sarapulov F. N., Goman V., Trekin G. E. Temperature calculation for linear induction motor in transport application with multiphysics approach. IOP Conference Series: Materials Science and Engineering. 2020. Vol. 966, Iss. 1. 012105. 17. Kurilin S. P., Rubin Yu. B., Dli M. I., Denisov V. N. Models and methods of designing linear electric motors for non-ferrous metals industry applications. Tsvetnye Metally. 2021. No. 11. pp. 83–90. 18. Smolyanov I., Shmakov E., Gasheva D. Research of linear induction motor as part of driver by detailed equivalent circuit. Proceedings of International Russian Automation Conference. 2019. 8867757. 19. Makarov L. N., Denisov V. N., Kurilin S. P. Designing and modeling a linear electric motor for vibration-technology machines. Russian Electrical Engineering. 2017. Vol. 88, No. 3. pp. 166–169. 20. Sarapulov F. N., Frizen V. E., Shvydkiy E. L., Smolyanov I. A. Mathe matical modeling of a linear-induction motor based on detailed equivalent circuits. Russian Electrical Engineering. 2018. Vol. 89, No. 4. pp. 270–274. 21. Yu S. O., Sarapulov F. N., Tomashevsky D. N. Mathematical modeling of electromechanical characteristics of linear electromagnetic and inductiondynamic motors. IOP Conference Series: Materials Science and Engineering. 2020. Vol. 950, Iss. 1. 012020. 22. Chapaev V. S., Volkov S. V., Martyashin A. A. Basic mathematics for understanding the magnetic field distribution in a linear induction motor with control layer. Reliability and quality: Proceedings of the international symposium. In 2 volumes. Ed. by N. K. Yurkov. Penza : Izdatelstvo PGU, 2016. Vol. 1. pp. 153–155. 23. UZTM-KARTEKS. Available at: http://www.uralmash.ru/ (Accessed: 12.05.2022). 24. Library of reference documentation. Available at: https://files.stroyinf.ru/ (Accessed: 15.07.2022). 25. PROMINDEKS. Available at: https://promindex.ru (Accessed: 11.09.2022). |